(1)求y的導(dǎo)數(shù);

(2)求y的導(dǎo)數(shù).

答案:
解析:

  解:(1)

  

  (2)化簡(jiǎn),得

  ∴=3-9=3×-1+0-9×(-)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2008年高中數(shù)學(xué)導(dǎo)數(shù)變?cè)囶} 題型:044

已知函數(shù)y=xlnx.

(1)求這個(gè)函數(shù)的導(dǎo)數(shù);

(2)求這個(gè)函數(shù)在點(diǎn)x=1處的切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-2蘇教版 蘇教版 題型:044

(1)曲線方程為y=求在x=1時(shí)的速度.

(2)求曲線y=在原點(diǎn)處切線的傾斜角.

(3)求函數(shù)y=的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖南省岳陽(yáng)市一中2009屆高三第七次月考數(shù)學(xué)(文)試題 題型:044

對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).

定義:(1)設(shè)是函數(shù)y=f(x)的導(dǎo)數(shù)y=的導(dǎo)數(shù),若方程=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”;

定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對(duì)于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x0,f(x0))對(duì)稱.

己知f(x)=x3-3x2+2x+2,請(qǐng)回答下列問(wèn)題:

(1)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo)

(2)檢驗(yàn)函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對(duì)稱,對(duì)于任意的三次函數(shù)寫出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論(不必證明)

(3)寫出一個(gè)三次函數(shù)G(x),使得它的“拐點(diǎn)”是(-1,3)(不要過(guò)程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求的導(dǎo)數(shù);

(2)求的導(dǎo)數(shù);

(3)求的導(dǎo)數(shù);

(4)求y=的導(dǎo)數(shù);

(5)求y=的導(dǎo)數(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案