【題目】已知函數(shù)f(x)=|x﹣2|+|2x+a|,a∈R.
(1)當(dāng)a=1時(shí),解不等式f(x)≥5;
(2)若存在x0滿足f(x0)+|x0﹣2|<3,求a的取值范圍.
【答案】
(1)解:當(dāng)a=1時(shí),f(x)=|x﹣2|+|2x+1|,.
由f(x)≥5得x﹣2|+|2x+1|≥5.
當(dāng)x≥2時(shí),不等式等價(jià)于x﹣2+2x+1≥5,解得x≥2,所以x≥2;
當(dāng)﹣ <x<2時(shí),不等式等價(jià)于2﹣x+2x+1≥5,即x≥2,所以此時(shí)不等式無解;
當(dāng)x≤﹣ 時(shí),不等式等價(jià)于2﹣x﹣2x﹣1≥5,解得x≤﹣ ,所以x≤﹣ .
所以原不等式的解集為(﹣∞,﹣ ]∪[2,+∞).
(2)解:f(x)+|x﹣2|=2|x﹣2|+|2x+a|=|2x﹣4|+|2x+a|≥|2x+a﹣(2x﹣4)|=|a+4|
因?yàn)樵}等價(jià)于(f(x)+|x﹣2|)min<3,
所以|a+4|<3,所以﹣7<a<﹣1為所求實(shí)數(shù)a的取值范圍
【解析】(1)當(dāng)a=1時(shí),根據(jù)絕對(duì)值不等式的解法即可解不等式f(x)≥5;(2)求出f(x)+|x﹣2|的最小值,根據(jù)不等式的關(guān)系轉(zhuǎn)化為(f(x)+|x﹣2|)min<3即可求a的取值范圍.
【考點(diǎn)精析】本題主要考查了絕對(duì)值不等式的解法的相關(guān)知識(shí)點(diǎn),需要掌握含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=3mx﹣ ﹣(3+m)lnx,若對(duì)任意的m∈(4,5),x1 , x2∈[1,3],恒有(a﹣ln3)m﹣3ln3>|f(x1)﹣f(x2)|成立,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的定義域?yàn)?/span>A,若時(shí)總有為單函數(shù).例如,函數(shù)=2x+1()是單函數(shù).下列命題:
①函數(shù)=(xR)是單函數(shù);②若為單函數(shù),且則;③若f:AB為單函數(shù),則對(duì)于任意bB,它至多有一個(gè)原象;
④函數(shù)f(x)在某區(qū)間上具有單調(diào)性,則f(x)一定是單函數(shù).其中的真命題是 .(寫出所有真命題的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某超市,隨機(jī)調(diào)查了100名顧客購物時(shí)使用手機(jī)支付支付的情況,得到如下的列聯(lián)表,已知從其中使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為.
(1)根據(jù)已知條件完成列聯(lián)表,并根據(jù)此資料判斷是否有99.9%的把握認(rèn)為“超市購物用手機(jī)支付與年齡有關(guān)”.
(2)現(xiàn)按照“使用手機(jī)支付”和“不使用手機(jī)支付”進(jìn)行分層抽樣,從這100名顧客中抽取容量為5的樣本,求“從樣本中任選3人,則3人中至少2人使用手機(jī)支付”的概率.
青年 | 中老年 | 合計(jì) | |
使用手機(jī)支付 | 60 | ||
不使用手機(jī)支付 | 28 | ||
合計(jì) | 100 |
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)在定義域[-1,1]上既是奇函數(shù),又是減函數(shù).
(1)求證:對(duì)任意x1,x2∈[-1,1],有[f(x1)+f(x2)]·(x1+x2)≤0;
(2)若f(1-a)+f(1-a2)<0,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問100性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下2×2列聯(lián)表:
男 | 女 | 總計(jì) | |
愛好 | 40 | ||
不愛好 | 25 | ||
總計(jì) | 45 | 100 |
(1)將題中的2×2列聯(lián)表補(bǔ)充完整;
(2)能否有99%的把握認(rèn)為斷愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)?請(qǐng)說明理由;
附:K2= ,
p(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
(3)利用分層抽樣的方法從以上愛好該項(xiàng)運(yùn)動(dòng)的大學(xué)生中抽取6人組建了“運(yùn)動(dòng)達(dá)人社”,現(xiàn)從“運(yùn)動(dòng)達(dá)人設(shè)”中選派3人參加某項(xiàng)校際挑戰(zhàn)賽,記選出3人中的女大學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)的定義域?yàn)?/span>,其中為指數(shù)函數(shù)且過點(diǎn).
(1)求函數(shù)的解析式;
(2)判斷函數(shù)的單調(diào)性,并用函數(shù)單調(diào)性定義證明.
(3)若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b∈R,c∈[0,2π),若對(duì)任意實(shí)數(shù)x都有2sin(3x﹣ )=asin(bx+c),定義在區(qū)間[0,3π]上的函數(shù)y=sin2x的圖象與y=cosx的圖象的交點(diǎn)個(gè)數(shù)是d個(gè),則滿足條件的有序?qū)崝?shù)組(a,b,c,d)的組數(shù)為( )
A.7
B.11
C.14
D.28
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過對(duì)某城市一天內(nèi)單次租用共享自行車的時(shí)間分鐘到鐘的人進(jìn)行統(tǒng)計(jì),按照租車時(shí)間, , , , 分組做出頻率分布直方圖,并作出租用時(shí)間和莖葉圖(圖中僅列出了時(shí)間在, 的數(shù)據(jù)).
(1)求的頻率分布直方圖中的;
(2)從租用時(shí)間在分鐘以上(含分鐘)的人數(shù)中隨機(jī)抽取人,設(shè)隨機(jī)變量表示所抽取的人租用時(shí)間在內(nèi)的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com