動圓C與定圓C1:(x+3)2+y2=32內(nèi)切,與定圓C2:(x-3)2+y2=8外切,A點坐標(biāo)為(0,).
(1)求動圓C的圓心C的軌跡方程和離心率;
(2)若軌跡C上的兩點P,Q滿足,求|PQ|的值.
【答案】分析:(1)根據(jù)兩圓的位置關(guān)系,算出點C到C1、C2的距離之和等于6,再由橢圓的定義可得C點的軌跡是以C1,C2為焦點的橢圓,結(jié)合題中數(shù)據(jù)即可得到所求軌跡方程;
(2)設(shè)P(x1,y1),Q(x2,y2),根據(jù)解出x1=5x2且y1=5y2-18,根據(jù)PQ都在橢圓C上,聯(lián)解得出y2=3,代入前面式子可得y1=-3,且x1=x2=0,由此得出P、Q的坐標(biāo),從而得到|PQ|的值.
解答:解:(1)如圖,設(shè)動圓C的半徑為R,
,…①
,…②
①+②得,,
由橢圓的定義,C點的軌跡是以C1,C2為焦點,長軸長為的橢圓,
可得軌跡方程為,離心率為
(2)設(shè)P(x1,y1),Q(x2,y2),則
,∴
可得,…③
由P,Q是橢圓C上的兩點,
,解出y2=3
將y2=3代入③,得y1=-3,再將y2=3代入④,得x2=0,所以x1=0,
∴P(0,-3),Q(0,3),可得|PQ|=6.
點評:本題給出動圓與兩個定圓都相切,求圓心的軌跡方程并求滿足向量等式的P、Q的坐標(biāo).著重考查了圓與圓的位置關(guān)系、向量的坐標(biāo)運算和直線與圓錐曲線的位置關(guān)系等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

動圓C與定圓C1:(x+3)2+y2=32內(nèi)切,與定圓C2:(x-3)2+y2=8外切,A點坐標(biāo)為(0,
9
2
).
(1)求動圓C的圓心C的軌跡方程和離心率;
(2)若軌跡C上的兩點P,Q滿足
AP
=5
AQ
,求|PQ|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動圓C與定圓C1:(x+3)2+y2=9,C2:(x-3)2+y2=1都相外切,求動圓圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動圓C與定圓C1:(x+3)2+y2=9,C2:(x-3)2+y2=1都相外切,求動圓圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟寧市金鄉(xiāng)一中高二(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

動圓C與定圓C1:(x+3)2+y2=32內(nèi)切,與定圓C2:(x-3)2+y2=8外切,A點坐標(biāo)為(0,).
(1)求動圓C的圓心C的軌跡方程和離心率;
(2)若軌跡C上的兩點P,Q滿足,求|PQ|的值.

查看答案和解析>>

同步練習(xí)冊答案