【題目】筒車是我國古代發(fā)明的一種水利灌溉工具,明朝科學家徐光啟在《農(nóng)政全書》中用圖畫描繪了筒車的工作原理(如圖1).因其經(jīng)濟又環(huán)保,至今還在農(nóng)業(yè)生產(chǎn)中得到使用(如圖2).假定在水流量穩(wěn)定的情況下,筒車上的每一個盛水筒都做勻速圓周運動.因筒車上盛水筒的運動具有周期性,可以考慮利用三角函數(shù)模型刻畫盛水筒(視為質(zhì)點)的運動規(guī)律.將筒車抽象為一個幾何圖形,建立直角坐標系(如圖3).設(shè)經(jīng)過t秒后,筒車上的某個盛水筒從點P0運動到點P.由筒車的工作原理可知,這個盛水筒距離水面的高度H(單位: ),由以下量所決定:筒車轉(zhuǎn)輪的中心O到水面的距離h,筒車的半徑r,筒車轉(zhuǎn)動的角速度ω(單位: ),盛水筒的初始位置P0以及所經(jīng)過的時間t(單位: ).已知r=3,h=2,筒車每分鐘轉(zhuǎn)動(按逆時針方向)1.5圈, 點P0距離水面的高度為3.5,若盛水筒M從點P0開始計算時間,則至少需要經(jīng)過_______就可到達最高點;若將點距離水面的高度表示為時間的函數(shù),則此函數(shù)表達式為_________.
圖1 圖2 圖3
【答案】
【解析】
由題設(shè)條件求出初始位置與非負半軸的夾角,當第一次到達最高點時,求出所轉(zhuǎn)過的弧度,根據(jù)筒車每秒鐘轉(zhuǎn)動的弧度,求出第一次到達最高點的時間,即可得出第一空;
由三角函數(shù)的定義得出動點的縱坐標,利用縱坐標求出點距離水面的高度,即可得出第二空.
因為點P0距離水面的高度為3.5,則開始時與非負半軸的夾角為
由題意可知,筒車每分鐘轉(zhuǎn)動(按逆時針方向),即筒車每秒鐘轉(zhuǎn)動
當第一次到達最高點時,所轉(zhuǎn)過的弧度為,則所用時間為
即若盛水筒M從點P0開始計算時間,則至少需要經(jīng)過就可到達最高點;
設(shè)與非負半軸的夾角為,則
由三角函數(shù)的定義可知點的縱坐標為,
則點距離水面的高度的函數(shù)為,
故答案為:;
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面為平行四邊形,底面,是棱的中點,且,.
(1)求證:平面.
(2)求二面角的大小;
(3)如果是棱的中點,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C的焦點在y軸上,焦點到準線的距離為2,且對稱軸為y軸.
(1)求拋物線C的標準方程;
(2)當拋物線C的焦點為時,過F作直線交拋物線于,A、B兩點,若直線OA,OB(O為坐標原點)分別交直線于M、N兩點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓G的中心在坐標原點,其中一個焦點為圓F:x2+y2﹣2x=0的圓心,右頂點是圓F與x軸的一個交點.已知橢圓G與直線l:x﹣my﹣1=0相交于A、B兩點.
(I)求橢圓的方程;
(Ⅱ)求△AOB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知2017年市居民平均家庭凈收入走勢圖(家庭凈收入=家庭總收入一家庭總支出),如圖所示,則下列說法錯誤的是( )
A. 2017年2月份市居國民的平均家庭凈收入最低
B. 2017年4,5,6月份市居民的平均家庭凈收入比7、8、9月份的平均家庭凈收入波動小
C. 2017年有3個月市居民的平均家庭凈收入低于4000元
D. 2017年9、10、11、12月份平均家庭凈收入持續(xù)降低
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖①,在平行四邊形中,,,,于點,將沿折起,使,連接、,得到如圖②所示的幾何體.
(1)求證:平面平面;
(2)若點在線段上,直線與平面所成角的正切值為,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)拋物線的焦點為,過點作垂直于軸的直線與拋物線交于,兩點,且以線段為直徑的圓過點.
(1)求拋物線的方程;
(2)若直線與拋物線交于,兩點,點為曲線:上的動點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】短道速滑隊組織6名隊員(包括賽前系列賽積分最靠前的甲乙丙三名隊員在內(nèi))參加冬奧會選拔賽,記“甲得第一名”為,“乙得第二名”為,“丙得第三名”為,若是真命題,是假命題,是真命題,則選拔賽的結(jié)果為( )
A.甲得第一名、乙得第三名、丙得第二名
B.甲沒得第一名、乙沒得第二名、丙得第三名
C.甲得第一名、乙沒得第二名、丙得第三名
D.甲得第二名、乙得第一名、丙得第三名
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com