分析 由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{-x+y-2≥0}\\{x+y-4≤0}\\{x-3y+3≤0}\end{array}\right.$作出可行域如圖,
聯立$\left\{\begin{array}{l}{x+y-4=0}\\{-x+y-2=0}\end{array}\right.$,解得A(1,3),
化目標函數z=-3x+y為y=3x+z,
由圖可知,當直線y=3x+z過A(1,3)時,直線在y軸上的截距最小,z有最小值為-3×1+3=0.
故答案為:0.
點評 本題考查簡單的線性規(guī)劃,考查了數形結合的解題思想方法,是中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a>b>c | B. | b>c>a | C. | c>b>a | D. | b>a>c |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com