已知a、b、c分別為△ABC三個內(nèi)角A、B、C的對邊,若acosC+
3
asinC-b=0,則∠A=
 
考點:余弦定理
專題:三角函數(shù)的求值
分析:已知等式利用正弦定理化簡,再利用兩角和與差的正弦函數(shù)公式化簡,整理后求出tanA的值,即可確定出A的度數(shù).
解答: 解:將acosC+
3
asinC-b=0,利用正弦定理化簡得:sinAcosC+
3
sinAsinC-sinB=0,
即sinAcosC+
3
sinAsinC-sin(A+C)=sinAcosC+
3
sinAsinC-sinAcosC-cosAsinC=0,
整理得:
3
sinAsinC=cosAsinC,
∵sinC≠0,△ABC三個內(nèi)角A、B、C,
3
sinA=cosA,即tanA=
3
3
,
則A=
π
6

故答案為:
π
6
點評:此題考查了正弦定理,兩角和與差的正弦函數(shù)公式,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)空氣質(zhì)量監(jiān)測資料表明,一天的空氣質(zhì)量為優(yōu)良的概率是0.75,連續(xù)兩天為優(yōu)良的概率是0.6,已知某天的空氣質(zhì)量為優(yōu)良,則隨后一天的空氣質(zhì)量為優(yōu)良的概率是( 。
A、0.8B、0.75
C、0.6D、0.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知斜三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,側(cè)面A1ACC1為菱形,∠A1AC=60°,平面A1ACC1⊥平面ABC,M、N是AB,CC1的中點.
(I)求證:CM∥平面A1BN.
(Ⅱ)求證:A1C⊥BN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=a-2i,z2=b+i,
.
z1
是z1的共軛復(fù)數(shù).若
.
z1
•z2≥-4,則b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2,-1≤x0<x1<x2<…<xn≤1,an=|f(xn)-f(xn-1)|,n∈N*,Sn=a1+a2+a3+…+an,則Sn的最大值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn(n∈N*),關(guān)于數(shù)列{an}有下列命題:
①若{an}既是等差數(shù)列又是等比數(shù)列,則an=an+1(n∈N*);
②若Sn=an2+bn,(a,b∈R),則{an}是等差數(shù)列;
③若Sn=1-(-1)n,則{an}是等比數(shù)列;
④若{an}是等比數(shù)列,則Sm,S2m-Sm,S3m-S2m(m∈N*)也成等比數(shù)列;
其中正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐的側(cè)面展開圖是一個半徑為4cm的半圓,則此圓錐的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對該班50名學(xué)生進(jìn)行了問卷調(diào)查,得到如下的2×2列聯(lián)表.
喜愛打籃球 不喜愛打籃球 合計
男生 20 5 25
女生 10 15 25
合計 30 20 50
則至少有(  )的把握認(rèn)為喜愛打籃球與性別有關(guān).
A、95%B、99%
C、99.5%D、99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=acosωx-sinωx(ω>0)的圖象關(guān)于點M(
π
3
,0)中心對稱,且f(x)在x=
π
6
處取得最小值,則a+ω的一個可能值是( 。
A、1B、2C、3D、8

查看答案和解析>>

同步練習(xí)冊答案