已知橢圓C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)

(1)若橢圓的長軸長為4,離心率為
3
2
,求橢圓的標準方程;
(2)在(1)的條件下,設(shè)過定點M(0,2)的直線l與橢圓C交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.
分析:(1)利用橢圓的長軸長為4,離心率為
3
2
,求得幾何量,即可求得橢圓的標準方程;
(2)設(shè)出直線方程,代入橢圓方程,利用韋達定理,及∠AOB為銳角,建立不等式,即可求得直線l的斜率k的取值范圍.
解答:解:(1)由題意,2a=4,e=
c
a
=
3
2
,∴a=2,c=
3

∴b=
a2-c2
=1
∴橢圓C的標準方程為
x
2
 
4
+y2=1

(2)顯然直線x=0不滿足條件,可設(shè)直線l:y=kx+2,A(x1,y1),B(x2,y2
直線代入橢圓方程,消去y可得(1+4k2)x2+16kx+12=0
∵△=(16k)2-4×12×(1+4k2)>0,∴k<-
3
2
或k>
3
2

x1+x2=-
16k
1+4k2
,x1x2=
12
1+4k2

∴y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=
4-4k2
1+4k2

由于∠AOB為銳角,x1x2+y1y2>0,∴
12
1+4k2
+
4-4k2
1+4k2
>0

∴2<k<2
∴直線L的斜率的取值范圍是(-2,-
3
2
)∪(
3
2
,2)
點評:本題考查橢圓的標準方程,考查直線與橢圓的位置關(guān)系,考查韋達定理的運用,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:x2+
y2
m
=1
的焦點在y軸上,且離心率為
3
2
.過點M(0,3)的直線l與橢圓C相交于兩點A、B.
(1)求橢圓C的方程;
(2)設(shè)P為橢圓上一點,且滿足
OA
+
OB
OP
(O為坐標原點),當(dāng)|
PA
|-|
PB
|<
3
時,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
經(jīng)過 點B(0,
3
)
,且離心率為
1
2
,右頂點為A,左右焦點分別為F1,F(xiàn)2;橢圓C2以坐標原點為中心,且以F1F2為短軸端,上頂點為D.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)若C1與C2交于M、N、P、Q四點,當(dāng)AD∥F2B時,求四邊形MNPQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C經(jīng)過點A(1, 
3
2
)
,且經(jīng)過雙曲線y2-x2=1的頂點.P是該橢圓上的一個動點,F(xiàn)1,F(xiàn)2是橢圓的左右焦點,
(1)求橢圓C的方程;
(2)求|PF1|•|PF2|的最大值和最小值.
(3)求
PF1
PF2
的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)已知橢圓C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的兩個焦點分別為F1(-1,0),F(xiàn)2(1,0),長半軸長為
2

(1)(i)求橢圓C的方程;
(ii)類比結(jié)論“過圓
x
2
 
+
y
2
 
=r2
上任一點(x0,y0)的切線方程是x0x+yy0=
r
2
 
”,歸納得出:過橢圓
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
上任一點(x0,y0)的切線方程是
x0x
a
2
 
+
y0y
b
2
 
=1
x0x
a
2
 
+
y0y
b
2
 
=1
;
(2)設(shè)M,N是直線x=2上的兩個點,若
F1M
F2M
=0,求|MN|
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
,F(xiàn)1、F2分別為橢圓c的左右焦點,點P在橢圓C上(不是頂點),△PF1F2內(nèi)一點G滿足3
PG
=
PF1
+
PF2
,其中
OG
=(
1
9
a,
6
9
a)

(I)求橢圓C的離心率;
(Ⅱ)若橢圓C短軸長為2
3
,過焦點F2的直線l與橢圓C相交于A、B兩點(A、B不是左右頂點),若
AF2
=2
F2B
,求△F1AB面積.

查看答案和解析>>

同步練習(xí)冊答案