已知函數(shù)f(x)=
a
2
x2
-lnx,a∈R
(1)若a=1,求f(x)的單調(diào)遞增區(qū)間;
(2)若任意x∈(0,e],函數(shù)g(x)=
a
2
x2-lnx-
1
2
的值恒為正值,求a的范圍.
考點(diǎn):導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求導(dǎo)數(shù),利用導(dǎo)數(shù)的正負(fù),可得f(x)的單調(diào)遞增區(qū)間;
(2)分離參數(shù)求最值,即可求a的范圍.
解答: 解:(1)∵a=1,
f(x)=
x2
2
-lnx
,
∴x∈(0,+∞),f′(x)=x-
1
x

令f′(x)=0,則x=1,
當(dāng)0<x<1時(shí),f′(x)<0,f(x)單調(diào)遞減,
當(dāng)x>1時(shí),f′(x)>0,f(x)單調(diào)遞增,
∴f(x)的單調(diào)遞增區(qū)間是(1,+∞).
(2)g(x)=
a
2
x2-lnx-
1
2
的值恒為正值,可得a>
2lnx+1
x2

令h(x)=
2lnx+1
x2
,則h′(x)=
-2lnx
x4

∴x∈(0,1],h′(x)>0,x∈[1,e],h′(x)<0
∴x=1時(shí),h(x)取得最大值1,
∴a>1.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)在研究函數(shù)問題中的應(yīng)用、由不等式恒成立求解參數(shù)范圍,考查等價(jià)轉(zhuǎn)化思想,這種常規(guī)的數(shù)學(xué)思想方法需要理解掌握并運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線C1,C2都是以原點(diǎn)O為對(duì)稱中心,坐標(biāo)軸為對(duì)稱軸、離心率相等的橢圓,點(diǎn)M的坐標(biāo)是(0,1),線段MN是曲線C1的短軸,并且是曲線C2的長軸,直線l:y=m(0<m<1)與曲線C1交于A,D兩點(diǎn)(A在D的左側(cè)),與曲線C2交于B,C兩點(diǎn)(B在C的左側(cè)).
(1)當(dāng)m=
3
2
,|AC|=
5
4
時(shí),求橢圓C1,C2的方程;
(2)當(dāng)OC⊥AN,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓方程為
x2
4
+y2=1.
(1)求此橢圓的焦點(diǎn)坐標(biāo)和離心率;
(2)設(shè)此橢圓的左右焦點(diǎn)為F1,F(xiàn)2,過F2作x軸的垂線交橢圓于A、B兩點(diǎn),試求△ABF1的周長與面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀下面材料:根據(jù)兩角和與差的余弦公式,有
cos(α+β)=cosαcosβ-sinαsinβ①
cos(α-β)=cosαcosβ+sinαsinβ②
由①-②得 cos(α+β)-cos(α-β)=-2sinαsinβ
令 α+β=A,α-β=B,有α=
A+B
2
,β=
A-B
2
代入③得cosA-cosB=-2sin
A+B
2
sin
A-B
2

(1)類比上述推理方法,根據(jù)兩角和與差的正弦公式,證明:sinA+sinB=2sin
A+B
2
cos
A-B
2

(2)若在△ABC的三個(gè)內(nèi)角A,B,C,滿足在cos2A-cos2B=1-cos2C試判斷△ABC的形狀.(提示:如需要可直接利用或參閱結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,a,b,c分別是角A,B,C的對(duì)邊,向量
m
=(1,
3
),
n
=(sin2C,cos(A+B)),且
m
n
=0.
(Ⅰ)若a=4,c=
13
,求△ABC的面積;
(Ⅱ)若A=
π
3
,cosB>cosC,求
AB
BC
-2
BC
CA
-3
CA
AB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四個(gè)正數(shù),前三個(gè)數(shù)成等差數(shù)列,其和為48,后三個(gè)數(shù)成等比數(shù)列,其最后一個(gè)數(shù)為函數(shù)y=21-4x-x2的最大值,求這四個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,
q
=(-1,2a),
p
=(2b-c,cosC)且
q
p

(1)求角A的大。
(2)求函數(shù)f(C)=1-
2cos2C
1+tanC
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α,β為銳角,且cos(α+β)sinβ=sinα,則tanα的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(3,-1)和點(diǎn)B(6,1),直線l:2x-3y-9=0的法向量為
n
,則
AB
n
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案