已知角α,β為銳角,且cos(α+β)sinβ=sinα,則tanα的最大值是
 
考點:兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:由條件利用兩角和差的正弦公式、同角三角函數(shù)的基本關系可得 2tanα•tan2β-tanβ+tanα=0,再根據(jù)△=1-8tan2α≥0,求得tanα的最大值.
解答: 解:角α,β為銳角,且cos(α+β)sinβ=sinα=sin[(α+β)-β],
∴cos(α+β)sinβ=sin(α+β)cosβ-cos(α+β)sinβ,
化簡可得 tan(α+β)=2tanβ,即
tanα+tanβ
1-tanαtanβ
=2tanβ,
故有 2tanα•tan2β-tanβ+tanα=0,∴△=1-8tan2α≥0,
求得-
2
4
≤tanα≤
2
4
,α為銳角,故0<tanα≤
2
4
,
故答案為:
2
4
點評:本題主要考查兩角和差的正弦公式,同角三角函數(shù)的基本關系,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設不等式|x+1|+|x-1|≤2的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若x∈M,|y|≤
1
6
,|z|≤
1
9
,求證:|x+2y-3z|≤
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a
2
x2
-lnx,a∈R
(1)若a=1,求f(x)的單調遞增區(qū)間;
(2)若任意x∈(0,e],函數(shù)g(x)=
a
2
x2-lnx-
1
2
的值恒為正值,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)是奇函數(shù),當x>0時f(x)=x-x2,求函數(shù)f(x)的解析式并作圖指出其單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)集A中有5個元素,數(shù)集B中有3個元素,若集合B中的元素在A中都有元素和它對應,且滿足f(a1)<f(a2)<(fa3)<f(a4)<f(a5),共可以構成幾種從B到A的映射?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,若a8=0,則有a1+a2+a3+…+an=a1+a2+a3+…+a15-n成立.類比此性質,在等比數(shù)列{bn}中,若b10=1,則存在式
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=1,an=-2an-1(n≥2,n∈N),則其前6項的和S6=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,邊長為2的正方形ABCD和正方形ABEF所在的面成60°角,M,N分別是線段AC和BF上的點,且AM=FN,則線段MN的長的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)是定義在R上的偶函數(shù),且滿足f(1+x)=f(1-x),當x∈[0,1]時,f(x)=2x,若在區(qū)間[-2,3]上方程ax+2a-f(x)=0恰有四個不相等的實數(shù)根,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案