【題目】下列命題錯(cuò)誤的是( )
A.命題“若x2﹣3x+2=0,則x=1”的逆否命題為“若x≠1,則x2﹣3x+2≠0”
B.若p∧q為假命題,則p,q均為假命題
C.對命題P:存在x∈R,使得x2+x+1<0,則¬p為:任意x∈R,均有x2+x+1≥0
D.“x>2”是“x2﹣3x+2>0”的充分不必要條件
【答案】B
【解析】解:命題“若x2﹣3x+2=0,則x=1”的逆否命題為“若x≠1,則x2﹣3x+2≠0”,正確,滿足命題與逆否命題的關(guān)系;
若p∧q為假命題,則p,q均為假命題,由復(fù)合命題的真假判斷可知p∧q中,p、q一假即假;
對命題P:存在x∈R,使得x2+x+1<0,則¬p為:任意x∈R,均有x2+x+1≥0;滿足特稱命題與全稱命題的否定關(guān)系,正確;
“x>2”可以說明“x2﹣3x+2>0”,反之不成立,所以是充分不必要條件正確;
故選B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用特稱命題的相關(guān)知識可以得到問題的答案,需要掌握特稱命題:,,它的否定:,;特稱命題的否定是全稱命題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=x2+2ax+3在(﹣∞,1]上是減函數(shù),當(dāng)x∈[a+1,1]時(shí),f(x)的最大值與最小值之差為g(a),則g(a)的最小值為( )
A.
B.1
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C: (a>b>0)的離心率為,且過點(diǎn)(1,).過橢圓C的左頂點(diǎn)A作直線交橢圓C于另一點(diǎn)P,交直線l:x=m(m>a)于點(diǎn)M.已知點(diǎn)B(1,0),直線PB交l于點(diǎn)N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若MB是線段PN的垂直平分線,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,則下列關(guān)于函數(shù)f(x)的說法正確的是( )
A.為奇函數(shù)且在R上為增函數(shù)
B.為偶函數(shù)且在R上為增函數(shù)
C.為奇函數(shù)且在R上為減函數(shù)
D.為偶函數(shù)且在R上為減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離比到定直線的距離小1.
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)過點(diǎn)任意作互相垂直的兩條直線,分別交曲線于點(diǎn)和.設(shè)線段, 的中點(diǎn)分別為,求證:直線恒過一個(gè)定點(diǎn);
(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ= .
(1)寫出直線l的極坐標(biāo)方程與曲線C的普通方程;
(2)若點(diǎn) P是曲線C上的動(dòng)點(diǎn),求 P到直線l的距離的最小值,并求出 P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的增函數(shù)y=f(x)對任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求證:f(x)為奇函數(shù);
(3)若f(k3x)+f(3x﹣9x﹣4)<0對任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定個(gè)人稿費(fèi)納稅辦法是:不超過800元的不納稅;超過800元而不超過4 000元的按超過800元部分的14%納稅;超過4 000元的按全部稿酬的11%納稅.已知某人出版一本書,共納稅420元,這個(gè)人應(yīng)得稿費(fèi)(扣稅前)為( )
A.2800元
B.3000元
C.3800元
D.3818元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com