【題目】《流浪地球》是由劉慈欣的科幻小說(shuō)改編的電影,在2019年春節(jié)檔上影,該片上影標(biāo)志著中國(guó)電影科幻元年的到來(lái);為了振救地球,延續(xù)百代子孫生存的希望,無(wú)數(shù)的人前仆后繼,奮不顧身的精神激蕩人心,催人奮進(jìn).某網(wǎng)絡(luò)調(diào)查機(jī)構(gòu)調(diào)查了大量觀眾的評(píng)分,得到如下統(tǒng)計(jì)表:

1)求觀眾評(píng)分的平均數(shù)?

2)視頻率為概率,若在評(píng)分大于等于8分的觀眾中隨機(jī)地抽取1人,他的評(píng)分恰好是10分的概率是多少?

3)視頻率為概率,在評(píng)分大于等于8分的觀眾中隨機(jī)地抽取4人,用表示評(píng)分為10分的人數(shù),求的分布列及數(shù)學(xué)期望.

【答案】1)8分;(2;(32.

【解析】

1)設(shè)觀眾評(píng)分的平均數(shù)為,則由平均數(shù)定義即可求得

2)利用條件概率公式即可求解;

3)根據(jù)二項(xiàng)分布的概率公式可得分布列和期望.

1)設(shè)觀眾評(píng)分的平均數(shù)為,則

(分)

2)設(shè)A表示事件:“1位觀眾評(píng)分不小于,B表示事件:“1位觀眾評(píng)分是

3)由題知ξ服從,

分布列:

ξ

0

1

2

3

4

P

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如下表:

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

(2)若近幾年該農(nóng)產(chǎn)品每千克的價(jià)格 (單位:元)與年產(chǎn)量滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.

①根據(jù)(1)中所建立的回歸方程預(yù)測(cè)該地區(qū)年該農(nóng)產(chǎn)品的產(chǎn)量;

②當(dāng)為何值時(shí),銷售額最大?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年4月1日,新華通訊社發(fā)布:國(guó)務(wù)院決定設(shè)立河北雄安新區(qū).消息一出,河北省雄縣、容城、安新3縣及周邊部分區(qū)域迅速成為海內(nèi)外高度關(guān)注的焦點(diǎn).

(1)為了響應(yīng)國(guó)家號(hào)召,北京市某高校立即在所屬的8個(gè)學(xué)院的教職員工中作了“是否愿意將學(xué)校整體搬遷至雄安新區(qū)”的問(wèn)卷調(diào)查,8個(gè)學(xué)院的調(diào)查人數(shù)及統(tǒng)計(jì)數(shù)據(jù)如下:

調(diào)查人數(shù)()

10

20

30

40

50

60

70

80

愿意整體搬遷人數(shù)()

8

17

25

31

39

47

55

66

請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量關(guān)于變量的線性回歸方程保留小數(shù)點(diǎn)后兩位有效數(shù)字);若該校共有教職員工2500人,請(qǐng)預(yù)測(cè)該校愿意將學(xué)校整體搬遷至雄安新區(qū)的人數(shù);

(2)若該校的8位院長(zhǎng)中有5位院長(zhǎng)愿意將學(xué)校整體搬遷至雄安新區(qū),現(xiàn)該校擬在這8位院長(zhǎng)中隨機(jī)選取4位院長(zhǎng)組成考察團(tuán)赴雄安新區(qū)進(jìn)行實(shí)地考察,記為考察團(tuán)中愿意將學(xué)校整體搬遷至雄安新區(qū)的院長(zhǎng)人數(shù),求的分布列及數(shù)學(xué)期望.

參考公式及數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、,且兩焦點(diǎn)的距離為,橢圓上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的周長(zhǎng)為.

1)求橢圓的方程;

2)過(guò)點(diǎn)的直線交橢圓兩點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)為圓上任意一點(diǎn),點(diǎn),線段的中垂線交于點(diǎn).

(1)求動(dòng)點(diǎn)的軌跡方程;

(2)若動(dòng)直線與圓相切,且與動(dòng)點(diǎn)的軌跡交于點(diǎn),求面積的最大值(為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的極小值為1.

(1)求a的值;

(2)當(dāng)時(shí),對(duì)任意,有成立,求整數(shù)b的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,短軸的一個(gè)端點(diǎn)到焦點(diǎn)的距離為.

(1)求橢圓的方程;

(2)斜率為的直線與橢圓交于兩點(diǎn),線段的中點(diǎn)在直線上,求直線軸交點(diǎn)縱坐標(biāo)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖所示,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E、F分別為PC的三等分點(diǎn).

1)證明:AF∥平面EBD

2)已知AP=AD=1,AB=2,求二面角E-BD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),

(1)若曲線在點(diǎn)處的切線與軸平行,求

(2)當(dāng)時(shí),函數(shù)的圖象恒在軸上方,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案