【題目】某企業(yè)生產(chǎn)的產(chǎn)品具有60個(gè)月的時(shí)效性,在時(shí)效期內(nèi),企業(yè)投入50萬(wàn)元經(jīng)銷該產(chǎn)品,為了獲得更多的利潤(rùn),企業(yè)將每月獲得利潤(rùn)的10%再投入到次月的經(jīng)營(yíng)中,市場(chǎng)調(diào)研表明,該企業(yè)在經(jīng)銷這個(gè)產(chǎn)品的第個(gè)月的利潤(rùn)是(單位:萬(wàn)元),記第個(gè)月的當(dāng)月利潤(rùn)率為,例.
(1)求第個(gè)月的當(dāng)月利潤(rùn)率;
(2)求該企業(yè)在經(jīng)銷此產(chǎn)品期間,哪一個(gè)月的當(dāng)月利潤(rùn)率最大,并求出該月的當(dāng)月利潤(rùn)率.
【答案】(1);(2)第33個(gè)月,當(dāng)月利潤(rùn)率為.
【解析】
(1)當(dāng)時(shí),,當(dāng),時(shí),則,進(jìn)而求解;
(2)當(dāng),,是減函數(shù),此時(shí)的最大值為,
當(dāng),時(shí),,進(jìn)而求解.
(1)依題意得,
當(dāng)時(shí),,當(dāng),時(shí),,
則,
也符合上式,故當(dāng),,,
當(dāng),時(shí),
所以第個(gè)月的當(dāng)月利潤(rùn)率為;
(2)當(dāng),,是減函數(shù),此時(shí)的最大值為,當(dāng),時(shí),
,
在,單調(diào)遞增,在,單調(diào)遞減,
當(dāng)且僅當(dāng),即時(shí),有最大值,又,
,,
因?yàn)?/span>,所以當(dāng)時(shí),有最大值,
即該企業(yè)經(jīng)銷此產(chǎn)品期間,第33個(gè)月利潤(rùn)最大,其當(dāng)月利潤(rùn)率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,已知四邊形是邊長(zhǎng)為的正方形,點(diǎn)在底面上的射影為底面的中心點(diǎn),點(diǎn)在棱上,且的面積為1.
(1)若點(diǎn)是的中點(diǎn),求證:平面平面;
(2)在棱上是否存在一點(diǎn)使得二面角的余弦值為?若存在,求出點(diǎn)的位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,,是拋物線上關(guān)于軸對(duì)稱的兩點(diǎn),點(diǎn)是拋物線準(zhǔn)線與軸的交點(diǎn),是面積為4的直角三角形.
(1)求拋物線的方程;
(2)若為拋物線上異于原點(diǎn)的任意一點(diǎn),過(guò)作的垂線交準(zhǔn)線于點(diǎn),則直線與拋物線是何種位置關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,,,令表示集合所含元素的個(gè)數(shù).
(1)寫(xiě)出的值;
(2)當(dāng)時(shí),寫(xiě)出的表達(dá)式,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記是定義在上且滿足如下條件的函數(shù)組成的集合:
①對(duì)任意的,都有;
②存在常數(shù),使得對(duì)任意的、,都有.
(1)設(shè)函數(shù),,判斷函數(shù)是否屬于?并說(shuō)明理由;
(2)已知函數(shù),求證:方程的解至多一個(gè);
(3)設(shè)函數(shù),,且,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)三位數(shù):個(gè)位、十位、百位上的數(shù)字依次為,,,當(dāng)且僅當(dāng),時(shí),稱這樣的數(shù)為“凸數(shù)”(如243),現(xiàn)從集合中取出三個(gè)不同的數(shù)組成一個(gè)三位數(shù),則這個(gè)三位數(shù)是“凸數(shù)”的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)閱讀以下案例,利用此案例的想法化簡(jiǎn).
案例:考察恒等式左右兩邊的系數(shù).
因?yàn)橛疫?/span>,
所以,右邊的系數(shù)為,
而左邊的系數(shù)為,
所以=.
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接2022年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開(kāi)展了“冰雪答題王”冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(jī)(滿分為100分)分為6組:,,,,,,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)估計(jì)這100名學(xué)生的平均成績(jī)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(3)在抽取的100名學(xué)生中,規(guī)定:比賽成績(jī)不低于80分為“優(yōu)秀”,比賽成績(jī)低于80分為“非優(yōu)秀”.請(qǐng)將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷是否有99.9%的把握認(rèn)為“比賽成績(jī)是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | 40 | ||
女生 | 50 | ||
合計(jì) | 100 |
參考公式及數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某個(gè)地區(qū)計(jì)劃在某水庫(kù)建一座至多安裝3臺(tái)發(fā)電機(jī)的水電站,過(guò)去50年的水文資料顯示,水的年入流量(年入流量:一年內(nèi)上游來(lái)水與庫(kù)區(qū)降水之和,單位:十億立方米)都在4以上,其中,不足8的年份有10年,不低于8且不超過(guò)12的年份有35年,超過(guò)12的年份有5年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨(dú)立.
(1)求未來(lái)4年中,至多有1年的年入流量超過(guò)12的概率;
(2)若水的年入流量與其蘊(yùn)含的能量(單位:百億萬(wàn)焦)之間的部分對(duì)應(yīng)數(shù)據(jù)為如下表所示:
年入流量 | 6 | 8 | 10 | 12 | 14 |
蘊(yùn)含的能量 | 1.5 | 2.5 | 3.5 | 5 | 7.5 |
用最小二乘法求出關(guān)于的線性回歸方程;(回歸方程系數(shù)用分?jǐn)?shù)表示)
(3)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每年發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)受年入流量限制,并有如下關(guān)系:
年入流量 | |||
發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù) | 1 | 2 | 3 |
若某臺(tái)發(fā)電機(jī)運(yùn)行,則該臺(tái)年利潤(rùn)為5000萬(wàn)元;若某臺(tái)發(fā)電機(jī)未運(yùn)行,則該臺(tái)年虧損800萬(wàn)元,欲使水電站年總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)多少臺(tái)?
附:回歸方程系數(shù)公式:,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com