【題目】若函數(shù)為定義域上單調(diào)函數(shù),且存在區(qū)間(其中),使得當時,的取值范圍恰為,則稱函數(shù)上的正函數(shù),區(qū)間叫做等域區(qū)間

(1)已知上的正函數(shù),求的等域區(qū)間;

(2)試探究是否存在實數(shù),使得函數(shù)上的正函數(shù)?若存在,請求出實數(shù)的取值范圍;若不存在,請說明理由

【答案】(1);(2);

【解析】

試題分析:(1)由定義得當時, 代入解析式解方程組即可;(2)假設(shè)是區(qū)間上的正函數(shù),因為函數(shù)上的減函數(shù), 所以當時, , 兩式相減可得代入,由,故關(guān)于的方程在區(qū)間內(nèi)有實數(shù)解,利用一元二次方程根的分布從對稱軸、判別式和區(qū)間端點值三方面得不等式組解出即可;遇到這類題可以先畫出符合的圖像,在列不等式組比較好,否則容易漏解

試題解析:(1)因為上的正函數(shù),且上單調(diào)遞增, 所以當時, ,解锝,故的等域區(qū)間為

(2)因為函數(shù)上的減函數(shù),

所以當時,

兩式相減得,即

代入,

,且,

故關(guān)于的方程在區(qū)間內(nèi)有實數(shù)解,

,則

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知恒等式(1+x+x2n=a0+a1x+a2x2+…+a2nx2n
(1)求a1+a2+a3+…+a2n和a2+2a3+22a4+…+22n2a2n的值;
(2)當n≥6時,求證: a2+2A a3+…+22n2 a2n<49n2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax(a∈R),g(x)= (f′(x)為f(x)的導函數(shù)),若方程g(f(x))=0有四個不等的實根,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知拋物線y2=2px(p>0)上一點P( ,m)到準線的距離與到原點O的距離相等,拋物線的焦點為F.
(1)求拋物線的方程;
(2)若A為拋物線上一點(異于原點O),點A處的切線交x軸于點B,過A作準線的垂線,垂足為點E.試判斷四邊形AEBF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了分析某個高三學生的學習狀態(tài),對其下一個階段的學習提出指導性建議,某老師現(xiàn)對他前7次考試的數(shù)學成績x、物理成績y進行分析.下面是該學生7次考試的成績.

(1)他的數(shù)學成績與物理成績哪個更穩(wěn)定?請給出你的證明.

(2)已知該學生的物理成績y與數(shù)學成績x是線性相關(guān)的,若該學生的物理成績達到115分,請你估計他的數(shù)學成績大約是多少?并請你根據(jù)物理成績與數(shù)學成績的相關(guān)性,給出該學生在學習數(shù)學、物理上的合理建議.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知空間三點,

1)求以為邊的平行四邊形的面積;

2)若向量a分別與垂直,且|a|=,求a的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在長方形ABCD中,對角線AC與兩鄰邊所成的角分別為α,β,則cos2α+cos2β=1,則在立體幾何中,給出類比猜想并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)甲校高二年級有1 100人,乙校高二年級有900人,為了統(tǒng)計兩個學校高二年級在學業(yè)水平考試中的數(shù)學學科成績,采用分層抽樣的方法在兩校共抽取了200名學生的數(shù)學成績,如下表:已知本次測試合格線是50分,兩校合格率均為100%

甲校高二年級數(shù)學成績:

分組

[50,60

[60,70

[70,80

[80,90

[90,100]

頻數(shù)

10

25

35

30

x

乙校高二年級數(shù)學成績:

分組

[50,60

[60,70

[70,80

[80,90

[90,100]

頻數(shù)

15

30

25

y

5

1計算x,y的值,并分別估計以上兩所學校數(shù)學成績的平均分精確到1分

2若數(shù)學成績不低于80分為優(yōu)秀,低于80分的為非優(yōu)秀,根據(jù)以上統(tǒng)計數(shù)據(jù)寫下面2×2列聯(lián)表,并回答能否在犯錯誤的概率不超過005的前提下認為“兩個學校的數(shù)學成績有差異?”

甲校

乙校

總計

優(yōu)秀

非優(yōu)秀

總計

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln x,g(x)= (a>0),設(shè)F(x)=f(x)+g(x).

(1)求函數(shù)F(x)的單調(diào)區(qū)間;

(2)若函數(shù)y=F(x)(x∈(0,3])圖像上任意一點P(x0,y0)處的切線的斜率k≤恒成立,求實數(shù)a的最小值.

查看答案和解析>>

同步練習冊答案