10.如圖:在三棱柱ABC-A1B1C1中,四邊形A1ABB1是菱形,四邊形BCC1B1是矩形,且C1B1⊥AB.
(1)求證:CB⊥平面A1ABB1    
(2)若C1B1=3,AB=4,∠ABB1=60°,求AC1與平面BCC1B1所成角的大。

分析 (1)由已知得C1B1⊥AB,AB⊥BC,BC⊥BB1,由此能證明BC⊥平面A1ABB1
(2)作出△ABB1的高AM,則AM⊥平面BCC1B1,連接AC1、C1M,則AM⊥C1M.AC1與平面BCC1所成角度就是AC1與平面BCC1B1所成角度,也就是∠AC1M.由此能求出AC1與平面BCC1B1所成角的大。

解答 證明:(1)∵四邊形BCC1B1是矩形,且C1B1⊥AB,
∴AB⊥BC,BC⊥BB1,AB∩BB1=B,
∴BC⊥平面A1ABB1
解:(2)∵平面BCC1B1是矩形,C1B1⊥B1B,C1B1⊥AB,
∴C1B1⊥平面A1ABB1,則平面BCC1B1⊥平面A1ABB1.兩平面的交線(xiàn)是BB1.∵A1ABB1是菱形,且∠ABB1=60°,∴△ABB1是等邊三角形,
作出△ABB1的高AM,則AM⊥平面BCC1B1,
連接AC1、C1M,則AM⊥C1M.
AC1與平面BCC1所成角度就是AC1與平面BCC1B1所成角度,也就是∠AC1M.
由題設(shè),在等邊△ABB1中,B1M=MB=$\frac{AB}{2}$=2,AM=2$\sqrt{3}$,
在直角△C1B1M中,C1M=$\sqrt{4+9}$=$\sqrt{13}$,
在直角△AMC1中,tan∠AC1M=$\frac{AM}{{C}_{1}M}$=$\frac{2\sqrt{3}}{\sqrt{13}}$=$\frac{2\sqrt{39}}{13}$.
∴∠AC1M=arctan$\frac{2\sqrt{39}}{13}$.
∴AC1與平面BCC1B1所成角的大小為arctan$\frac{2\sqrt{39}}{13}$.

點(diǎn)評(píng) 本題考查線(xiàn)面垂直的證明,考查線(xiàn)面角的大粘的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.Sn=lnx+lnx3+lnx5+…+lnx2n-1=n2lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,則點(diǎn)D1到平面A1BD的距離是$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E、F分別為棱AD、C1D1的中點(diǎn),
(Ⅰ) 分別作出四邊形BED1F在平面ABCD、ABB1A1、BCC1B1內(nèi)的投影,并求出投影的面積;
投影一的面積為4;
投影二的面積為4;
投影三的面積為4;
(Ⅱ) 直線(xiàn)BF與ED1相交嗎?答案:不;求直線(xiàn)BE與D1F所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列函數(shù)完全相同的是( 。
A.f(x)=x,g(x)=x2B.f(x)=x,g(x)=$\root{3}{x^3}$C.f(x)=x,g(x)=$\sqrt{x}$D.f(x)=$\sqrt{x^2}g(x)=\sqrt{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在圓錐PO中,已知PO=$\sqrt{2}$,圓O的直徑AB=2,C是弧AB的中點(diǎn),D為AC的中點(diǎn).
(1)求異面直線(xiàn)PD和BC所成的角
(2)求直線(xiàn)OC和平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD⊥DC于D,且AC平分∠DAB,延長(zhǎng)DC交AB的延長(zhǎng)線(xiàn)于點(diǎn)P.
(1)求證:PC2=PA•PB;
(2)若3AC=4BC,⊙O的直徑為7,求線(xiàn)段PC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖1,在直角梯形ABCD中,AD∥BC,AD⊥AB,AB=BC=$\frac{1}{2}$AD,E是AD的中點(diǎn),O是AC與BE的交點(diǎn),將△ABE沿BE折起到△A1BE的位置,如圖2,
(1)證明:平面A1DC⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求直線(xiàn)CB與平面A1BE所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)函數(shù)f(x)=|x+2|+|x-2|,x∈R,不等式f(x)≤6的解集為M.
(1)求M;
(2)當(dāng)a,b∈M時(shí),證明:3|a+b|≤|ab+9|.

查看答案和解析>>

同步練習(xí)冊(cè)答案