(本小題滿分13分)
已知橢圓的焦點分別為,且過點
(1)求橢圓的標準方程;
(2)設(shè)為橢圓內(nèi)一點,直線交橢圓兩點,且為線段的中點,求直線的方程.
(1)由已知條件得橢圓的焦點在軸上,其中………3分
所以橢圓的標準方程是:………6分
(2)設(shè),因為點都在橢圓上,
,………10分
………11分
又直線過點,所以直線方程為………13分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)橢圓的兩個焦點分別為F1(0,-2),F(xiàn)2(0,2),離心率e =。(Ⅰ)求橢圓方程;(Ⅱ)一條不與坐標軸平行的直線l與橢圓交于不同的兩點M、N,且線段MN中點的橫坐標為-,求直線l傾斜角的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)橢圓的焦點分別為,直線軸于點,且

(1)試求橢圓的方程;
(2)過分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(如圖所示),試求四邊形面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知某橢圓的焦點F1(-4,0),F(xiàn)2(4,0),過點F2并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10,橢圓上不同兩點A(x1,y1),C(x2,y2)滿足條件|F2A|,|F2B|,|F2C|成等差數(shù)列.(1)求該橢圓的方程;(2)求弦AC中點的橫坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓的弦被點(4,2)平分,則此弦所在的直線方程為(  )
A.x-2y="0" B.x+2y-4="0" C.2x+13y-14="0" D.x+2y-8=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓與一等軸雙曲線相交,是其中一個交點,并且雙曲線的頂點是該橢圓的焦點,雙曲線的焦點是橢圓的頂點,的周長為.設(shè)為該雙曲線上異于頂點的任一點,直線與橢圓的交點分別為.

(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設(shè)直線、的斜率分別為,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,且兩個焦點和短軸的一個端點是一個等腰三角形的頂點.斜率為的直線過橢圓的上焦點且與橢圓相交于,兩點,線段的垂直平分線與軸相交于點
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍;
(Ⅲ)試用表示△的面積,并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓,的左焦點,作軸的垂線交橢圓于點,為右焦點。若,則橢圓的離心率為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知是橢圓()的半焦距,則的取值范圍是___________

查看答案和解析>>

同步練習冊答案