(本小題滿分13分)
已知橢圓
的焦點分別為
,且過點
.
(1)求橢圓
的標準方程;
(2)設(shè)
為橢圓
內(nèi)一點,直線
交橢圓
于
兩點,且
為線段
的中點,求直線
的方程.
(1)由已知條件得橢圓的焦點在
軸上,其中
………3分
所以橢圓
的標準方程是:
………6分
(2)設(shè)
,因為點
都在橢圓
上,
,………10分
………11分
又直線過點
,所以直線方程為
………13分
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)橢圓的兩個焦點分別為F
1(0,-2
),F(xiàn)
2(0,2
),離心率e =
。(Ⅰ)求橢圓方程;(Ⅱ)一條不與坐標軸平行的直線l與橢圓交于不同的兩點M、N,且線段MN中點的橫坐標為-
,求直線l傾斜角的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)橢圓
的焦點分別為
,直線
交
軸于點
,且
.
(1)試求橢圓的方程;
(2)過
分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(如圖所示),試求四邊形
面積的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知某橢圓的焦點F
1(-4,0),F(xiàn)
2(4,0),過點F
2并垂直于x軸的直線與橢圓的一個交點為B,且|F
1B|+|F
2B|=10,橢圓上不同兩點A(x
1,y
1),C(x
2,y
2)滿足條件|F
2A|,|F
2B|,|F
2C|成等差數(shù)列.(1)求該橢圓的方程;(2)求弦AC中點的橫坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若橢圓
的弦被點(4,2)平分,則此弦所在的直線方程為( )
A.x-2y="0" | B.x+2y-4="0" | C.2x+13y-14="0" | D.x+2y-8=0 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,橢圓
與一等軸雙曲線相交,
是其中一個交點,并且雙曲線的頂點是該橢圓的焦點
,雙曲線的焦點是橢圓的頂點
,
的周長為
.設(shè)
為該雙曲線上異于頂點的任一點,直線
和
與橢圓的交點分別為
和
.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設(shè)直線
、
的斜率分別為
、
,證明
;
(Ⅲ)是否存在常數(shù)
,使得
恒成立?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的離心率為
,且兩個焦點和短軸的一個端點是一個等腰三角形的頂點.斜率為
的直線
過橢圓的上焦點且與橢圓相交于
,
兩點,線段
的垂直平分線與
軸相交于點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)求
的取值范圍;
(Ⅲ)試用
表示△
的面積,并求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過橢圓
,
的左焦點
,作
軸的垂線交橢圓于點
,
為右焦點。若
,則橢圓的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
是橢圓
(
)的半焦距,則
的取值范圍是___________
查看答案和解析>>