(2x+
3
)4=a0+a1x+a2x2+a3x3
+a4x4,則(a0+a2+a4)2-(a1+a3)2的值為( 。
A、-1B、1C、2D、-2
考點:二項式系數(shù)的性質(zhì)
專題:二項式定理
分析:在所給的等式中,分別x=1、令x=-1可得兩個等式,再把這兩個等式相乘,即可得到要求式子的值.
解答: 解:在(2x+
3
)4=a0+a1x+a2x2+a3x3
+a4x4中,
令x=1可得a0+a1+a2+a3+a4=(2+
3
)
4
;再令x=-1可得 得a0-a1+a2-a3+a4=(-2+
3
)
4
,
兩式相乘可得 (a0+a2+a4)2-(a1+a3)2=(2+
3
)
4
(-2+
3
)
4
=1,
故選:B.
點評:本題主要考查二項式定理的應用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的x賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

命題“?數(shù)列{an},{bn}既是等差數(shù)列,又是等比數(shù)列”(  )
A、是特稱命題并且是假命題
B、是全稱命題并且是假命題
C、是特稱命題并且是真命題
D、是全稱命題并且是真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a∈{2,3},b∈{1,2,3},執(zhí)行如圖所示程序框圖,則輸出的結果共有( 。
A、3種B、4種C、5種D、6種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α∈(-
π
2
,0),sin(-α-
3
2
π)=
5
5
,則sin(-π-α)=(  )
A、
5
5
B、
2
5
5
C、-
5
5
D、-
2
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z滿足(z-3)(2-i)=5(i為虛數(shù)單位),則在復平面內(nèi)z對應的點在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|x+1≥0},N={x|x2<4},則M∩N=( 。
A、(-∞,-1]
B、[-1,2)
C、(-1,2]
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在約束條件
x≥1
y≥0
2x+y≤a
下,設目標函數(shù)z=x+y的最大值為M,則當4≤a≤6時,M的取值范圍是(  )
A、[3,5]
B、[2,4]
C、[1,4]
D、[2,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(2x-
π
3
),x∈[0,π]且方程f(x)=m有兩個不相等的實根.
(1)求m的取值范圍;
(2)求方程的兩實根之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義非零向量
OM
=(a,b)的“相伴函數(shù)”為f(x)=asinx+bcosx(x∈R),向量
OM
=(a,b)稱為f(x)=asinx+bcosx,(x∈R)的“相伴向量”(其中O為坐標原點).記平面內(nèi)所有向量的“相伴函數(shù)”構成的集合為S
(1)設h(x)=
3
cos(x+
π
6
)-3cos(
π
3
-x)(x∈R)
①求證:h(x)∈S
②求(1)中函數(shù)h(x)的“相伴向量”的模;
(2)已知點M(a,b)滿足:
b
a
∈(0,
3
],向量
OM
“相伴函數(shù)”f(x)在x=x0處取得最大值,求tan2x0的取值范圍.

查看答案和解析>>

同步練習冊答案