【題目】歷史上,許多人研究過圓錐的截口曲線.如圖,在圓錐中,母線與旋轉(zhuǎn)軸夾角為,現(xiàn)有一截面與圓錐的一條母線垂直,與旋轉(zhuǎn)軸的交點(diǎn)到圓錐頂點(diǎn)的距離為,對(duì)于所得截口曲線給出如下命題:
①曲線形狀為橢圓;
②點(diǎn)為該曲線上任意兩點(diǎn)最長距離的三等分點(diǎn);
③該曲線上任意兩點(diǎn)間的最長距離為,最短距離為;
④該曲線的離心率為.其中正確命題的序號(hào)為 ( )
A. ①②④B. ①②③④C. ①②③D. ①④
【答案】A
【解析】
畫出軸截面的圖像.根據(jù)選項(xiàng)可判斷出①正確.解直角三角形計(jì)算出的長以及長軸的長,由此可判斷出②正確,排除D選項(xiàng).由于曲線是連續(xù)不斷的,故任意兩點(diǎn)間沒有最短距離,故③錯(cuò)誤,排除B,C選項(xiàng).由此得出正確結(jié)論.
根據(jù)選項(xiàng)可知①正確,即曲線形狀為橢圓. 畫出軸截面的圖像如下圖所示,由于,所以,,即,所以,而曲線上任意兩點(diǎn)最長距離為,故點(diǎn)為該曲線上任意兩點(diǎn)最長距離的三等分點(diǎn),由此可判斷出②正確,排除D選項(xiàng).由于曲線是連續(xù)不斷的,故任意兩點(diǎn)間沒有最短距離,故③錯(cuò)誤,排除B,C選項(xiàng).綜上所述,本小題選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為常數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個(gè)極值點(diǎn),,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左,右焦點(diǎn)分別為, ,離心率為, 是橢圓上的動(dòng)點(diǎn),當(dāng)時(shí), 的面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)的直線交橢圓于, 兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間(單位:分鐘)進(jìn)行調(diào)查,將收集的數(shù)據(jù)分成,,,,,六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時(shí)間不低于40分鐘的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)直方圖中的數(shù)據(jù)填寫下面的2×2列聯(lián)表,并通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 | 60 | ||
女 | 110 | ||
合計(jì) |
(2)現(xiàn)按照“課外體育達(dá)標(biāo)”與“課外體育不達(dá)標(biāo)”進(jìn)行分層抽樣,抽取8人,再從這8名學(xué)生中隨機(jī)抽取3人參加體育知識(shí)問卷調(diào)查,記“課外體育不達(dá)標(biāo)”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.參考公式:
P(K2≥k0) | 0.15 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年5月27日當(dāng)今世界圍棋排名第一的柯潔在與的人機(jī)大戰(zhàn)中中盤棄子認(rèn)輸,至此柯潔與的三場比賽全部結(jié)束,柯潔三戰(zhàn)全負(fù),這次人機(jī)大戰(zhàn)再次引發(fā)全民對(duì)圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱為“圍棋迷”.
(1)請(qǐng)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否有95%的把握認(rèn)為“圍棋迷”與性別有關(guān)?
非圍棋迷 | 圍棋迷 | 合計(jì) | |
男 | |||
女 | 10 | 55 | |
合計(jì) |
(2)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名學(xué)生中的“圍棋迷”人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,數(shù)學(xué)期望和方差.
獨(dú)立性檢查臨界值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | … | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | … |
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn)為,過點(diǎn)的直線交橢圓于兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)若的斜率為,為的中點(diǎn),且的斜率為,求橢圓的方程;
(2)連結(jié)并延長,交橢圓于點(diǎn),若橢圓的長半軸長是大于的給定常數(shù),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為擔(dān)任班主任的教師辦理手機(jī)語音月卡套餐,為了解通話時(shí)長,采用隨機(jī)抽樣的方法,得到該校100位班主任每人的月平均通話時(shí)長(單位:分鐘)的數(shù)據(jù),其頻率分布直方圖如圖所示,將頻率視為概率.
(1)求圖中的值;
(2)估計(jì)該校擔(dān)任班主任的教師月平均通話時(shí)長的中位數(shù);
(3)在,這兩組中采用分層抽樣的方法抽取6人,再從這6人中隨機(jī)抽取2人,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】環(huán)境問題是當(dāng)今世界共同關(guān)注的問題,我國環(huán)保總局根據(jù)空氣污染指數(shù)溶度,制定了空氣質(zhì)量標(biāo)準(zhǔn):
某市政府為了打造美麗城市,節(jié)能減排,從2010年開始考查了連續(xù)六年11月份的空氣污染指數(shù),繪制了頻率分布直方圖,經(jīng)過分析研究,決定從2016年11月1日起在空氣質(zhì)量重度污染和嚴(yán)重污染的日子對(duì)機(jī)動(dòng)車輛限號(hào)出行,即車牌尾號(hào)為單號(hào)的車輛單號(hào)出行,車牌尾號(hào)為雙號(hào)的車輛雙號(hào)出行(尾號(hào)為字母的,前13個(gè)視為單號(hào),后13個(gè)視為雙號(hào)).王先生有一輛車,若11月份被限行的概率為0.05.
(1)求頻率分布直方圖中的值;
(2)若按分層抽樣的方法,從空氣質(zhì)量良好與中度污染的天氣中抽取6天,再從這6天中隨機(jī)抽取2天,求至少有一天空氣質(zhì)量中度污染的概率;
(3)該市環(huán)保局為了調(diào)查汽車尾氣排放對(duì)空氣質(zhì)量的影響,對(duì)限行兩年來的11月份共60天的空氣質(zhì)量進(jìn)行統(tǒng)計(jì),其結(jié)果如表:
根據(jù)限行前6年180天與限行后60天的數(shù)據(jù),計(jì)算并填寫列聯(lián)表,并回答是否有的把握認(rèn)為空氣質(zhì)量的優(yōu)良與汽車尾氣的排放有關(guān).
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式: ,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)已知點(diǎn),直線與曲線交于兩點(diǎn),且,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com