【答案】
分析:根據(jù)函數(shù)的解析式,分類討論,當(dāng)x≤0時(shí),f(x)=x+cosx,求導(dǎo),判斷導(dǎo)數(shù)的符號(hào),確定函數(shù)的單調(diào)性,根據(jù)f(0)=1>0,x→-∞時(shí),f(x)→-∞,從而求得函數(shù)零點(diǎn)的個(gè)數(shù);當(dāng)x>0時(shí),f(x)=
,求導(dǎo),判斷導(dǎo)數(shù)的符號(hào),確定函數(shù)的單調(diào)性和極值,根據(jù)f(2)=
<0,f(0)=1>0,x→+∞時(shí),f(x)→+∞,從而求得函數(shù)零點(diǎn)的個(gè)數(shù).
解答:解:當(dāng)x≤0時(shí),f(x)=x+cosx,
f′(x)=1-sinx≥0,
∴f(x)在(-∞,0)上單調(diào)遞增,且f(0)=1>0,x→-∞時(shí),f(x)→-∞,
∴f(x)在(-∞,0)上有一個(gè)零點(diǎn);
當(dāng)x>0時(shí),f(x)=
,
f′(x)=x
2-4=0,
解得x=2或x=-2(舍),
∴當(dāng)0<x<2時(shí),f′(x)<0,當(dāng)x>2時(shí),f′(x)>0,
∴f(x)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,
且f(2)=
<0,f(0)=1>0,x→+∞時(shí),f(x)→+∞,
∴f(x)在(0,+∞)上有兩個(gè)零點(diǎn);
綜上函數(shù)f(x)=
的零點(diǎn)個(gè)數(shù)為3個(gè),
故選B.
點(diǎn)評(píng):此題考查了函數(shù)零點(diǎn)問(wèn)題,函數(shù)的零點(diǎn)個(gè)數(shù)問(wèn)題實(shí)際上就是函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù)問(wèn)題,體現(xiàn)了轉(zhuǎn)化的思想,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,從而確定函數(shù)的零點(diǎn)個(gè)數(shù)等基礎(chǔ)題,同時(shí)考查了知識(shí)的靈活運(yùn)用和運(yùn)算能力.