3.函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax-b(x>0)}\\{0(x=0)}\\{g(x)(x<0)}\end{array}\right.$在區(qū)間(a+$\frac{4}{a}$,-b2+4b)上滿足f(-x)+f(x)=0,則g(-$\sqrt{2}$)的值為( 。
A.-2$\sqrt{2}$B.2$\sqrt{2}$C.-$\sqrt{2}$D.$\sqrt{2}$

分析 由題意知f(x)是區(qū)間(a+$\frac{4}{a}$,-b2+4b)上的奇函數(shù),從而求出b=2,a=-2,由此能求出g(-$\sqrt{2}$).

解答 解:由題意知f(x)是區(qū)間(a+$\frac{4}{a}$,-b2+4b)上的奇函數(shù),
∴a+$\frac{4}{a}-^{2}+4b=0,a<0$,
∴(b-2)2+($\sqrt{-a}-\frac{2}{\sqrt{-a}}$)2=0,
解得b=2,a=-2,
∴g(-$\sqrt{2}$)=-f($\sqrt{2}$)=-2-$\sqrt{2}a+b$=-2+2$\sqrt{2}+2$=2$\sqrt{2}$.
故選:B.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知|an|是遞增的等差數(shù)列,a1,a2是函數(shù)f(x)=x2-10x+21的兩個(gè)零點(diǎn).
(1)求數(shù)列|an|的通項(xiàng)公式;
(2)記bn=an×3n,求數(shù)列|bn|的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)等比數(shù)列{an}中,${a_3}=\frac{3}{2},{S_3}=\frac{9}{2}$,求公比q的值.
(2)已知數(shù)列{an}中,${S_n}={n^2}$,求數(shù)列{an}通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合M={x|(x+1)(x-4)<0},N={x|x|<3}則M∩N=( 。
A.(-3,-1)B.(-1,3)C.(3,4)D.(-1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.不等式1<|x+1|<3的解集為(-4,-2)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)為F1、F2,正△AF1F2的中心恰為橢圓的上頂點(diǎn)B,且$\overrightarrow{B{F_1}}•\overrightarrow{B{F_2}}=-2$,點(diǎn)M為橢圓上任一點(diǎn),點(diǎn)N與M關(guān)于x軸對稱.
(1)求橢圓的方程;
(2)點(diǎn)P為橢圓上的一動點(diǎn),直線PM,PN都不與坐標(biāo)軸平行,且分別與x軸交于C,D兩點(diǎn),從原點(diǎn)O作經(jīng)過點(diǎn)C,D兩點(diǎn)的圓E的切線,切點(diǎn)為H,判斷|OH|是否為定值,若為定值,求出定值,若不為定值,求出|OH|的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知實(shí)數(shù)a>0,集合$A=\left\{{x\left|{\frac{x+1}{x-a}<0}\right.}\right\}$,集合B={x||2x-1|>5}.
(1)求集合A、B;
(2)若A∩B≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線x•(2t-1)-y(2t+1)+1=0(t∈R)的傾斜角為α,則α的范圍是( 。
A.0≤α<$\frac{π}{4}$或$\frac{3π}{4}$<α≤πB.$\frac{π}{4}$≤α≤$\frac{3π}{4}$且α≠$\frac{π}{2}$C.0≤α<$\frac{π}{4}$或$\frac{3π}{4}$<α<πD.0≤α<$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.方程lgx+x-3=0一定有解的區(qū)間是(  )
A.(2,3)B.(1,2)C.(0,1)D.(3,4)

查看答案和解析>>

同步練習(xí)冊答案