精英家教網 > 高中數學 > 題目詳情
18.不等式1<|x+1|<3的解集為(-4,-2)∪(0,2).

分析 去掉絕對值號得到關于x的不等式組,解出即可.

解答 解:∵1<|x+1|<3,
∴$\left\{\begin{array}{l}{-3<x+1<3}\\{x+1>1或x+1<-1}\end{array}\right.$,
解得:-4<x<-2或0<x<2,
故答案為:(-4,-2)∪(0,2).

點評 本題考查了解絕對值不等式問題,考查分類討論思想,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

12.為了了解培訓講座對某工廠工人生產時間(生產一個零件所用的時間,單位:分鐘)的影響.從工廠隨機選取了200名工人,再將這200名工人隨機的分成A,B兩組,每組100人.A組參加培訓講座,B組不參加.培訓講座結束后A,B兩組中各工人的生產時間的調查結果分別為表1和表2.
                                                                                   表1:
生產時間[60,65)[65,70)[70,75)[75,80)
人數30402010
表2
生產時間[60,65)[65,70)[70,75)[75,80)[80,85)
人數1025203015
(1)甲、乙兩名工人是隨機抽取到的200名工人中的兩人,求甲、乙分在不同組的概率;
(2)完成圖3的頻率分布直方圖,比較兩組的生產時間的中位數的大小和兩組工人中個體間的差異程度的大小;(不用計算,可通過直方圖直接回答結論)

(3)完成下面2×2列聯(lián)表,并回答能否有99.9%的把握認為“工人的生產時間”與參加培訓講座有關?
生產時間小于70分鐘生產時間不小于70分鐘合計
A組工人a=b=
B組工人c=d=
合計n=
下面臨界值表僅供參考:
P(K2≥k00.150.100.050.0250.010.0050.001
k02.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.已知在數列{an}中,$\frac{{a}_{n}}{{a}_{n-1}}$=4(n≥2,且n∈N*),a2=4,則使不等式12an($\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+$\sqrt{{a}_{3}}$+…+$\sqrt{{a}_{n}}$)<2000成立的n的最大值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知函數f(x)=(x+a)ex,其中a∈R.
(1)若曲線y=f(x)在點A(0,a)處的切線l與直線y=|2a-2|x平行,求l的方程;
(2)若?a∈[1,2],函數f(x)在(b-ea,2)上為增函數,求證:e2-3≤b<ea+2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.若f(x)=x3-ax2+1在(1,3)內單調遞減,則實數a的范圍是( 。
A.[$\frac{9}{2}$,+∞)B.(-∞,3]C.(3,$\frac{9}{2}$)D.(0,3)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.函數f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax-b(x>0)}\\{0(x=0)}\\{g(x)(x<0)}\end{array}\right.$在區(qū)間(a+$\frac{4}{a}$,-b2+4b)上滿足f(-x)+f(x)=0,則g(-$\sqrt{2}$)的值為( 。
A.-2$\sqrt{2}$B.2$\sqrt{2}$C.-$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.函數f(x)=x2-(2a-1)x-3在$({\frac{3}{2},+∞})$上是增函數,則實數a的范圍是( 。
A.a≤1B.a≥1C.a≤2D.a≥2

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.過點P($\frac{1}{2}$,1)的直線l與圓C:(x-1)2+y2=4交于A,B兩點,當∠ACB最小時,三角形ACB的面積為$\frac{\sqrt{55}}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.一個圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個部分,現(xiàn)要把其中一個部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形ABCD(如圖所示,其中O為圓心,C,D在半圓上),設∠BOC=θ,直四棱柱木梁的體積為V(單位:m3),側面積為S(單位:m2).
(Ⅰ)分別求V與S關于θ的函數表達式;
(Ⅱ)求側面積S的最大值;
(Ⅲ)求θ的值,使體積V最大.

查看答案和解析>>

同步練習冊答案