考點(diǎn):等比關(guān)系的確定
專(zhuān)題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:(1)可對(duì)等式兩邊同除以2n+1,再由等比數(shù)列的定義,即可得證;
(2)可由等比數(shù)列的性質(zhì),得到r的方程,解出,再加以檢驗(yàn)即可;
(3)由(1)得到an,即可得到所求.
解答:
(1)證明:數(shù)列{a
n}滿足a
n+1=6a
n+2
n+1,a
1=1,
令b
n=
+
,則b
n+1=
+,
則有
+=3(
+
),即有b
n+1=3b
n,
故數(shù)列{
+
}是首項(xiàng)為1,公比為3的等比數(shù)列;
(2)解:由(1)得,
+
=3
n-1,
即有a
n=2
n(3
n-1-
),
若數(shù)列{a
n+r2
n}是等比數(shù)列,
即有a
1+2r,a
2+4r,a
3+8r成等比數(shù)列,
即1+2r,10+4r,68+8r成等比數(shù)列,
則(1+2r)(68+8r)=(10+4r)
2,
解得r=
,
則a
n+r2
n=2
n(3
n-1-
)
+•2
n=
•6
n,
則{a
n+r2
n}是以2為首項(xiàng),6為公比的等比數(shù)列;
(3)解:由(2)得,
=2
n-1(3
n-1-
)=6
n-1-2
n-2.
點(diǎn)評(píng):本題考查等比數(shù)列的判斷,注意運(yùn)用定義,考查等比數(shù)列的性質(zhì),考查構(gòu)造數(shù)列的思想方法求復(fù)雜數(shù)列的通項(xiàng)的方法,考查運(yùn)算能力,屬于中檔題.