13.函數(shù)f(x)=sin(x+$\frac{π}{6}$)的一個(gè)遞減區(qū)間是( 。
A.[-$\frac{π}{2}$,$\frac{π}{2}$]B.[-π,0]C.[-$\frac{2}{3}π$,$\frac{2}{3}π$]D.[$\frac{π}{2}$,$\frac{2}{3}π$]

分析 由x+$\frac{π}{6}$在正弦函數(shù)的減區(qū)間內(nèi)求得x的范圍,求出正弦函數(shù)的一個(gè)減區(qū)間[$\frac{π}{3},\frac{4π}{3}$],再由[$\frac{π}{2}$,$\frac{2}{3}π$]
⊆[$\frac{π}{3},\frac{4π}{3}$]得答案.

解答 解:由$\frac{π}{2}+2kπ≤x+\frac{π}{6}≤\frac{3π}{2}+2kπ$,
解得$\frac{π}{3}+2kπ≤x≤\frac{4π}{3}+2kπ,k∈Z$,
取k=0,得$\frac{π}{3}≤x≤\frac{4π}{3}$,
而[$\frac{π}{2}$,$\frac{2}{3}π$]⊆[$\frac{π}{3},\frac{4π}{3}$],
∴[$\frac{π}{2}$,$\frac{2}{3}π$]是函數(shù)f(x)=sin(x+$\frac{π}{6}$)的一個(gè)遞減區(qū)間.
故選:D.

點(diǎn)評(píng) 本題考查復(fù)合三角函數(shù)的單調(diào)性,關(guān)鍵是熟記正弦函數(shù)的單調(diào)區(qū)間,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)在區(qū)間(0,+∞)上是單調(diào)遞減的,試比較f(a2-a+1)與$f(\frac{3}{4})$的大小f(a2-a+1)$≤f(\frac{3}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=x2+bx+c,若f(3)=f(5),則b=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若橢圓2kx2+ky2=1的一個(gè)焦點(diǎn)是(0,-4).求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,則下列命題中正確的是(1),(2),(3).(填寫所有正確命題的編號(hào))
(1)Sn=an2+bn(a,b∈R),則{an}為等差數(shù)列;(2)若Sn=1+(-1)n+1,則{an}是等比數(shù)列;(3){an}為等比數(shù)列,且$\underset{lim}{n→∞}$Sn=2012,則$\underset{lim}{n→∞}$an=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.當(dāng)m為何值時(shí),方程x2-2(m-1)x+3m2=11有兩個(gè)相等的實(shí)數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若$\frac{tanα}{tanα-1}$=2,則cosα=±$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=2x-m的圖象與函數(shù)g(x)=$\frac{x}{2}$-2圖象關(guān)于直線y=x對(duì)稱,則m=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=x+lnx-2零點(diǎn)所在區(qū)間為( 。
A.(0,1)B.(e,e2C.(1,e)D.$(\frac{1}{2},1)$

查看答案和解析>>

同步練習(xí)冊(cè)答案