已知函數(shù)
,
,其中
R .
(1)討論
的單調(diào)性;
(2)若
在其定義域內(nèi)為增函數(shù),求正實數(shù)
的取值范圍;
(3)設(shè)函數(shù)
, 當(dāng)
時,若存在
,對于任意的
,總有
成立,求實數(shù)
的取值范圍.
(1)①當(dāng)
時,
,
在
上單調(diào)遞增;
②當(dāng)
時,由
,得
;由
,得
;
故
在
上單調(diào)遞減,在
上單調(diào)遞增.
(2)
(3)
試題分析:(1)
的定義域為
,且
,
①當(dāng)
時,
,
在
上單調(diào)遞增;
②當(dāng)
時,由
,得
;由
,得
;
故
在
上單調(diào)遞減,在
上單調(diào)遞增.
(2)
,
的定義域為
,
因為
在其定義域內(nèi)為增函數(shù),所以
,
而
,當(dāng)且僅當(dāng)
時取等號,所以
(3)當(dāng)
時,
,
由
得
或
,當(dāng)
時,
;當(dāng)
時,
.
所以在
上,
而
在
上的最大值為
有
分
所以實數(shù)
的取值范圍是
點評:解決的關(guān)鍵是能根據(jù)導(dǎo)數(shù)的符號分類討論得到函數(shù)單調(diào)性,以及根據(jù)極值來得到最值,解決不等式的成立,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
都是定義在
上的函數(shù),
,
,
,
,在有窮數(shù)列
中,任意取正整數(shù)
,則前
項和大于
的概率是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知函數(shù)
的導(dǎo)函數(shù)
滿足
>
(
),則( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
函數(shù)
的單調(diào)遞增區(qū)間是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時,求證:函數(shù)
在
上單調(diào)遞增;
(Ⅱ)若函數(shù)
有三個零點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
對于三次函數(shù)
,給出定義:設(shè)
是函數(shù)
的導(dǎo)數(shù),
是
的導(dǎo)數(shù),若方程
有實數(shù)解
,則稱點
為函數(shù)
的“拐點”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”應(yīng)對對稱中心.根據(jù)這一發(fā)現(xiàn),則函數(shù)
的對稱中心為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,討論
的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)已知函數(shù)
.(
)
(1)若函數(shù)
有三個零點
,且
,
,求函數(shù)
的單調(diào)區(qū)間;
(2)若
,
,試問:導(dǎo)函數(shù)
在區(qū)間(0,2)內(nèi)是否有零點,并說明理由.
(3)在(Ⅱ)的條件下,若導(dǎo)函數(shù)
的兩個零點之間的距離不小于
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
曲線
在點
處的切線斜率為
.
查看答案和解析>>