一個幾何體的三視圖如右圖所示,則該幾何體的體積是( 。
A、
1
2
B、
1
3
C、1
D、
5
6
考點:由三視圖求面積、體積
專題:計算題
分析:先由三視圖畫出幾何體的直觀圖,再由圖中所給數(shù)據(jù)及柱體、錐體體積計算公式計算此幾何體體積即可.
解答: 解:由三視圖可知此幾何體為組合體:正方體去掉一角,其直觀圖如圖:
∵正方體的邊長為1,∴正方體的體積為1
去掉的三棱錐的體積為
1
3
×
1
2
×1×1=
1
6

∴此組合體的體積為1-
1
6
=
5
6

故選D.
點評:本題考查了由三視圖求幾何體的體積,解題的關鍵是由三視圖判斷幾何體的形狀及三視圖的數(shù)據(jù)所對應的幾何量.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

甲乙丙三組各有7名成員,測得三組成員體重數(shù)據(jù)的平均數(shù)都是58,方差分別是S2=36,S2=25,S2=16,則數(shù)據(jù)波動最小的一組是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設方程x2+y2-2mx-2m2y+m4+2m2-m=0表示一個圓.
(1)求m的取值范圍;
(2)m取何值時,圓的半徑最大?并求出最大半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一次數(shù)學測驗中,某小組14名學生分別與全班的平均分85分的差是:2,3,-3,-5,12,12,8,2,-1,4,-10,-2,5,5,那么這個小組的平均分是( 。
A、97.2B、87.29
C、92.32D、82.86

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=f(x)定義域為(
1
2
,+∞),f(1)=f(3)=1,f(x)的導數(shù).f′(x)=a(
2
x
+2x-5),其中a為常數(shù)且a>0,則不等式組
-2≤x-2y≤
1
2
f(2x+y)≤1
所表示的平面區(qū)域的面積等于( 。
A、
1
5
B、
3
5
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知集合{(x,y)|0≤y≤x2,且0≤x≤1}所表示的圖形的面積為
1
3
,若集合M={(x,y)||y|-|x|≤1},N={(x,y)||y|≥x2+1},則M∩N所表示的圖形面積為( 。
A、
1
3
B、
2
3
C、1
D、
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2+x+1,x≤0
-x2+x+1,x>0
,解不等式f(x)<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)計算(要求寫出計算過程):
(-2)2
+
3-8
+lg0.01+5log52

(2)已知x+x-1=7,求下列各式的值:
①x2+x-2;
x
1
2
+x-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求出下列各式的值
(1)(-2013)0+8-0.25×
4
1
2
+(
32
×
3
)6-(2-
3
2
)
4
3

(2)已知a+a-1=7,求值①a2+a-2; ②a-
1
2
+a
1
2

查看答案和解析>>

同步練習冊答案