【題目】已知二次函數(shù)y=f(x)滿足f(﹣2)=f(4)=﹣16,且f(x)最大值為2.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)在[t,t+1](t>0)上的最大值.
【答案】
(1)解:∵已知二次函數(shù)y=f(x)滿足f(﹣2)=f(4)=﹣16,且f(x)最大值為2,
故函數(shù)的圖像的對稱軸為x=1,
可設(shè)函數(shù)f(x)=a(x﹣1)2+2,a<0.
根據(jù)f(﹣2)=9a+2=﹣16,求得a=﹣2,
故f(x)=﹣2(x﹣1)2+2=﹣2x2+4x
(2)解:當t≥1時,函數(shù)f(x)在[t,t+1]上是減函數(shù),
故最大值為f(t)=﹣2t2+4t,
當0<t<1時,函數(shù)f(x)在[t,1]上是增函數(shù),在[1,t+1]上是減函數(shù),
故函數(shù)的最大值為f(1)=2.
綜上,fmax(x)=
【解析】(1)由條件可得二次函數(shù)的圖像的對稱軸為x=1,可設(shè)函數(shù)f(x)=a(x﹣1)2+2,a<0.根據(jù)f(﹣2)=﹣16,求得a的值,可得f(x)的解析式.(2)分當t≥1時和當0<t<1時兩種情況,分別利用函數(shù)f(x)的單調(diào)性,求得函數(shù)的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】2015年12月,京津冀等地數(shù)城市指數(shù)“爆表”,北方此輪污染為2015年以來最嚴重的污染過程,為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數(shù)據(jù)如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期七 |
車流量(萬輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
的濃度(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散點圖知與具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;
的濃度;
(ii)規(guī)定:當一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為優(yōu);當一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應控制當天車流量在多少萬輛以內(nèi)?(結(jié)果以萬輛為單位,保留整數(shù))
參考公式:回歸直線的方程是,其中, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一個圓.
(1)求實數(shù)m的取值范圍;
(2)求該圓的半徑r的取值范圍;
(3)求圓心C的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面幾種推理過程是演繹推理的是 ( )
A. 某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人數(shù)超過50人
B. 兩條直線平行,同旁內(nèi)角互補,如果∠A與∠B是兩條平行直線的同旁內(nèi)角,則∠A+∠B=180°
C. 由平面三角形的性質(zhì),推測空間四邊形的性質(zhì)
D. 在數(shù)列{an}中,a1=1,an= (an-1+)(n≥2),由此歸納出{an}的通項公
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,某幾何體的三視圖是三個邊長為1的正方形及每個正方形內(nèi)一段半徑為1,圓心角為的圓弧,則該幾何體的體積是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)= 的定義域為R,則實數(shù)a的取值范圍為( )
A.(0,1)
B.[0,1]
C.(0,1]
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】海島B上有一座高為10米的塔,塔頂?shù)囊粋觀測站A,上午11時測得一游船位于島北偏東15°方向上,且俯角為30°的C處,一分鐘后測得該游船位于島北偏西75°方向上,且俯角45°的D處(假設(shè)游船勻速行駛).
(1)求該船行駛的速度(單位:米/分鐘).
(2)又經(jīng)過一段時間后,游船到達海島B的正西方向E處,問此時游船距離海島B多遠.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y= 的定義域為( )
A.(﹣∞,1]
B.(﹣∞,2]?
C.(﹣∞,﹣ )∩(﹣ ,1]
D.(﹣∞,﹣ )∪(﹣ ,1]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com