【題目】海島B上有一座高為10米的塔,塔頂?shù)囊粋(gè)觀測(cè)站A,上午11時(shí)測(cè)得一游船位于島北偏東15°方向上,且俯角為30°的C處,一分鐘后測(cè)得該游船位于島北偏西75°方向上,且俯角45°的D處(假設(shè)游船勻速行駛).

(1)求該船行駛的速度(單位:米/分鐘).

(2)又經(jīng)過(guò)一段時(shí)間后,游船到達(dá)海島B的正西方向E處,問(wèn)此時(shí)游船距離海島B多遠(yuǎn).

答案】(1)20米/分鐘;(2)米.

【解析】(1)在中,,AB = 10米,

則BC = 米.

中,,AB = 10米,則BD = 10米.

中,,

則CD = = 20(米).

所以速度v = = 20(米/分鐘).

(2)在中,,

又因?yàn)?/span>,所以,

所以

中,由正弦定理可知,

所以(米).

故又經(jīng)過(guò)一段時(shí)間后,游船到達(dá)海島B的正西方向E處,此時(shí)游船距離海島米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù), ).以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,與直角坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系.設(shè)曲線的極坐標(biāo)方程為.

(Ⅰ)設(shè)為曲線上任意一點(diǎn),求的取值范圍;

(Ⅱ)若直線與曲線交于兩點(diǎn), ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=f(x)滿足f(﹣2)=f(4)=﹣16,且f(x)最大值為2.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)在[t,t+1](t>0)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)g(x)=log2x,x∈(0,2),若關(guān)于x的方程|g(x)|2+m|g(x)|+2m+3=0有三個(gè)不同實(shí)數(shù)解,則實(shí)數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】太極圖是由黑白兩個(gè)魚(yú)形紋組成的圖案,俗稱陰陽(yáng)魚(yú),太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相互統(tǒng)一的和諧美.定義:能夠?qū)A的周長(zhǎng)和面積同時(shí)等分成兩部分的函數(shù)稱為圓的一個(gè)“太極函數(shù)”.下列有關(guān)說(shuō)法中:

①對(duì)圓的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);

②函數(shù)是圓的一個(gè)太極函數(shù);

③存在圓,使得是圓的太極函數(shù);

④直線所對(duì)應(yīng)的函數(shù)一定是圓的太極函數(shù).

所有正確說(shuō)法的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定函數(shù):① ,② ,③y=|x2﹣2x|,④y=x+ ,其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號(hào)是(
A.②④
B.②③
C.①③
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某賽季,甲、乙兩名籃球運(yùn)動(dòng)員都參加了7場(chǎng)比賽,他們所有比賽得分的情況用如圖所示的莖葉圖表示.

(1)求甲、乙兩名運(yùn)動(dòng)員得分的中位數(shù);

(2)你認(rèn)為哪位運(yùn)動(dòng)員的成績(jī)更穩(wěn)定?

(3)如果從甲、乙兩位運(yùn)動(dòng)員的7場(chǎng)得分中各隨機(jī)抽取一場(chǎng)的得分,求甲的得分大于乙的得分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),已知x≥0時(shí),f(x)=x2﹣2x.
(1)畫(huà)出偶函數(shù)f(x)的圖像的草圖,并求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)直線y=k(k∈R)與函數(shù)y=f(x)恰有4個(gè)交點(diǎn)時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知離心率為的橢圓過(guò)點(diǎn),點(diǎn)分別為橢圓的左、右焦點(diǎn),過(guò)的直線交于兩點(diǎn),且.

(1)求橢圓的方程;

(2)求證:以 為直徑的圓過(guò)坐標(biāo)原點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案