求下列函數(shù)的定義域
(1)f(x)=
x+1
-
1
2-x

(2)y=
1
|x+2|-1
考點(diǎn):函數(shù)的定義域及其求法
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)題意,列出使函數(shù)解析式有意義的關(guān)于自變量的不等式(組),求出解集即可.
解答: 解:(1)根據(jù)題意,得;
x+1≥0
2-x≠0

解得x≥-1,且x≠2;
∴f(x)的定義域是[-1,2)∪(2,+∞);
(2)根據(jù)題意,得;
|x+2|-1≠0,
即|x+2|≠1,
解得x≠-1,且x≠-3;
∴f(x)的定義域是{x|x≠-1,且x≠-3}.
點(diǎn)評(píng):本題考查了求函數(shù)定義域的問(wèn)題,解題時(shí)應(yīng)根據(jù)函數(shù)的解析式,列出使解析式有意義的關(guān)于自變量的不等式(組),是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)定義域?yàn)閇-1,1],且f(x)-f(y)=f(
x-y
1-xy
),且f(
1
2011+x
)=1+f(
1
x
),求P=f(
1
5
)+f(
1
11
)+…+f(
1
r2+r-1
)+…+f(
1
20122
+2012-1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,側(cè)面PAB是正三角形,AB=2,BC=
2
,PC=
6
.E、H分別為PA、AB的中點(diǎn).
(I)求證:PH⊥AC;
(Ⅱ)求三棱錐P-EHD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{xn}的各項(xiàng)為不等于1的正數(shù),數(shù)列{yn}滿(mǎn)足yn=2logaxn(a>0且a≠1),設(shè)y3=19,y6=13.
(Ⅰ)求數(shù)列{yn}的前多少項(xiàng)之和為最大,最大值為多少?
(Ⅱ)設(shè)bn=2 yn,Sn=b1+b2+…+bn,求Sn;
(Ⅲ)試判斷,是否存在正整數(shù)M,使得當(dāng)n>M時(shí),xn>1恒成立?若存在,求出相應(yīng)的M值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且
3
bsinA=acosB.
(Ⅰ)求角B的大。
(Ⅱ)若b=
3
,a=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-1)2+(y-2)2=4,過(guò)Q(0,-1)作直線(xiàn)l交圓C于AB兩點(diǎn),|AB|=2
3
,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-
a
x

(1)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為
3
2
,求a的值;
(3)若f(x)>x2在(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合 A={x|x2-5x+6=0},B={x|x2+2x-8=0},C={x|x2-ax+a2-19=0}.
(1)求A∪B;
(2)若A=C,求實(shí)數(shù)a的值;
(3)若A∩C≠∅,B∩C=∅,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x0是方程log2(x+1)=
2
x
的1個(gè)根,且x0∈(a,a+1),a∈Z,則a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案