【題目】某中學從甲乙兩個教師所教班級的學生中隨機抽取100人,每人分別對兩個教師進行評分,滿分均為100分,整理評分數(shù)據,將分數(shù)以10為組距分成6組:,,,,,.得到甲教師的頻率分布直方圖,和乙教師的頻數(shù)分布表:
乙教師分數(shù)頻數(shù)分布表 | |
分數(shù)區(qū)間 | 頻數(shù) |
3 | |
3 | |
15 | |
19 | |
35 | |
25 |
(1)在抽樣的100人中,求對甲教師的評分低于70分的人數(shù);
(2)從對乙教師的評分在范圍內的人中隨機選出2人,求2人評分均在范圍內的概率;
(3)如果該校以學生對老師評分的平均數(shù)是否大于80分作為衡量一個教師是否可評為該年度該校優(yōu)秀教師的標準,則甲、乙兩個教師中哪一個可評為年度該校優(yōu)秀教師?(精確到0.1)
【答案】(1)人;(2);(3)乙可評為年度該校優(yōu)秀教師
【解析】
(1)根據頻率分布直方圖求出70分以上的頻率,總頻率之和為可得70分以下的頻率,由頻率即可求解.
(2)根據頻數(shù)分布表有3人,有3人,分別進行標記,利用列舉法求出隨機選出2人的基本事件個數(shù),然后再求出評分均在范圍內的基本事件個數(shù),根據古典概型的概率計算公式即可求解.
(3)利用平均數(shù)小矩形的面積小矩形底邊中點橫坐標之和,求出甲的平均分,再利用平均數(shù)的公式求出乙的平均分即可得出結果.
(1)由頻率分布直方圖可知,70分以上的頻率為,
70分以下的頻率為,
所以對甲教師的評分低于70分的人數(shù):.
(2)由頻數(shù)分布表有3人,有3人,
記的3人為A、B、C,的3人為、、,
隨機選出2人:,,,,,,
, ,,, ,,,
,,共種;
評分均在的抽取方法:, ,,共3種;
所以2人評分均在范圍內的概率.
(3)由頻率分布直方圖可得的頻率為:
甲教師的平均數(shù)為:
,
乙教師的平均數(shù)為:
,
由于乙教師的平均數(shù)大于80分,故乙可評為年度該校優(yōu)秀教師.
科目:高中數(shù)學 來源: 題型:
【題目】從盛滿2升純酒精的容器里倒出1升純酒精,然后填滿水,再倒出1升混合溶液后又用水填滿,以此繼續(xù)下去,則至少應倒 次后才能使純酒精體積與總溶液的體積之比低于10%.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知點,,拋物線的焦點為線段中點.
(1)求拋物線的方程;
(2)過點的直線交拋物線于兩點,,過點作拋物線的切線,為切線上的點,且軸,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,四邊形ABCD為平行四邊形,且,,平面PAC.
(1)求證:平面;
(2)若異面直線PC與AD所成的角為30°,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019冠狀病毒。CoronaVirus Disease2019(COVID-19))是由新型冠狀病毒(2019-nCoV)引發(fā)的疾病,目前全球感染者以百萬計,我國在黨中央、國務院、中央軍委的堅強領導下,已經率先控制住疫情,但目前疫情防控形勢依然嚴峻,湖北省中小學依然延期開學,所有學生按照停課不停學的要求,居家學習.小李同學在居家學習期間,從網上購買了一套高考數(shù)學沖刺模擬試卷,快遞員計劃在下午4:00~5:00之間送貨到小區(qū)門口的快遞柜中,小李同學父親參加防疫志愿服務,按規(guī)定,他換班回家的時間在下午4:30~5:00,則小李父親收到試卷無需等待的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方體的棱長為1,P是空間中任意一點,下列正確命題的個數(shù)是( )
①若P為棱中點,則異面直線AP與CD所成角的正切值為;
②若P在線段上運動,則的最小值為;
③若P在半圓弧CD上運動,當三棱錐的體積最大時,三棱錐外接球的表面積為;
④若過點P的平面與正方體每條棱所成角相等,則截此正方體所得截面面積的最大值為
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,橢圓的方程為,且直線與以原點為圓心,橢圓短軸長為直徑的圓相切.
(1)求的值;
(2)若橢圓左右頂點分別為,過點作直線與橢圓交于兩點,且位于第一象限,在線段上.
①若和的面積分別為,問是否存在這樣的直線使得?請說明理由;
②直線與直線交于點,連結,記直線的斜率分別為,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)給出三個條件:①函數(shù)的圖象關于直線對稱;②函數(shù)的圖象關于點對稱;③函數(shù)的圖象上相鄰兩個最高點的距離為.從中選出兩個條件補充在下面的問題中,并以此為依據求解問題.
已知函數(shù)(,),_____,_____.求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com