如圖,P是二面角α-AB-β棱AB上的一點(diǎn),分別在α,β上引射線PM,PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α-AB-β的大小是 ______.
過(guò)AB上一點(diǎn)Q分別在α,β內(nèi)做AB的垂線,交PM,PN于M點(diǎn)和N點(diǎn)
則∠MQN即為二面角α-AB-β的平面角,如下圖所示:
設(shè)PQ=a,則∵∠BPM=∠BPN=45°
∴QM=QN=a
PM=PN=
2
a
又由∠MPN=60°,易得△PMN為等邊三角形
則MN=
2
a
解三角形QMN易得∠MQN=90°
故答案為:90°
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知PO⊥平面ABCD,點(diǎn)O在AB上,EAPO,四邊形ABCD是直角梯形,ABDC,且BC⊥AB,BC=CD=BO=PO,EA=AO=
1
2
CD

(Ⅰ)求證:PE⊥平面PBC;
(Ⅱ)求二面角C-PB-D的大;
(Ⅲ)在線段PE上是否存在一點(diǎn)M,使DM平面PBC,若存在求出點(diǎn)M;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為2,高為1,過(guò)頂點(diǎn)A作一平面α與側(cè)面BCC1B1交于EF,且EFBC.若平面α與底面ABC所成二面角的大小為x(0<x≤
π
6
)
,四邊形BCEF面積為y,則函數(shù)y=f(x)的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正三棱錐的高為
3
,側(cè)棱長(zhǎng)為
7
,那么側(cè)面與底面所成二面角的大小是(  )
A.60°B.30°C.arccos
21
7
D.arcsin
21
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在二面角α-l-β中,A∈l,B∈l,AC?α,BD?β,且AC⊥l,BD⊥l,已知AB=1,AC=BD=2,CD=
5
,則二面角α-l-β的余弦值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在三棱錐S-ABC中,如圖,∠SAB=∠SAC=∠ACB=90°,AC=2,
BC=
13
,SB=
29

(1)證明:SC⊥BC;
(2)求側(cè)面SBC與底面ABC所成的二面角大;
(3)(理)求異面直線SC與AB所成的角的大。ㄓ梅慈呛瘮(shù)表示).
(文)求三棱錐的體積VS-ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在四棱錐P-ABCD中,四邊形ABCD為菱形,∠ABC=60°,AB=2,△PCB為正三角形,且平面PCB⊥平面ABCD,M,N分別為BC,PD的中點(diǎn).
(1)求證:MN面APB;
(2)求二面角B-NC-P的余弦值;
(3)求四棱錐P-ABCD被截面MNC分成的上下兩部分體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,邊長(zhǎng)為2的正方形ABCD中,點(diǎn)E、F分別是邊AB、BC上的點(diǎn),將△AED、△DCF分別沿DE、DF折起,使A、C兩點(diǎn)重合于點(diǎn)A′.
(1)△A′EF恰好是正三角形且Q是A′F的中點(diǎn),求證:EQ⊥平面A′FD
(2)當(dāng)E、F分別是AB、BC的中點(diǎn)時(shí),求二面角A′-EF-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知兩條互不重合的直線m,n,兩個(gè)不同的平面α,β,下列命題中正確的是(  )
A.若m∥α,n∥β,且m∥n,則α∥β
B.若m⊥α,n∥β,且m⊥n,則α⊥β
C.若m⊥α,n∥β,且m∥n,則α∥β
D.若m⊥α,n⊥β,且m⊥n,則α⊥β

查看答案和解析>>

同步練習(xí)冊(cè)答案