【題目】數(shù)列{an}的前n項(xiàng)和是Sn , 且Sn+ =1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=log3 ,數(shù)列 的前n項(xiàng)和為T(mén)n , 若不等式Tn<m,對(duì)任意的正整數(shù)n恒成立,求m的取值范圍.

【答案】
(1)解:由

①﹣②可得 ,

,

當(dāng)n=1時(shí) ,則

∴數(shù)列{an}是以 為首項(xiàng), 為公比的等比數(shù)列,

因此


(2)解: ,

∵不等式Tn<m,對(duì)任意的正整數(shù)n恒成立,


【解析】(1)由 , ,相減可得 ,再利用等比數(shù)列的通項(xiàng)公式即可得出;(2)利用對(duì)數(shù)的運(yùn)算性質(zhì)、“裂項(xiàng)求和”即可得出.
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的前n項(xiàng)和,需要了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè):實(shí)數(shù)滿足,其中:實(shí)數(shù)滿足.

(1),且為真,為假,求實(shí)數(shù)的取值范圍;

(2)的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是定義域?yàn)?/span>的奇函數(shù).

(1)求的值.

(2)若,試求不等式的解集;

(3)若上的最小值為,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“雙十一”已經(jīng)成為網(wǎng)民們的網(wǎng)購(gòu)狂歡節(jié),某電子商務(wù)平臺(tái)對(duì)某市的網(wǎng)民在今年“雙十一”的網(wǎng)購(gòu)情況進(jìn)行摸底調(diào)查,用隨機(jī)抽樣的方法抽取了100人,其消費(fèi)金額(百元)的頻率分布直方圖如圖所示:

(1)求網(wǎng)民消費(fèi)金額的平均值和中位數(shù);

(2)把下表中空格里的數(shù)填上,能否有90%的把握認(rèn)為網(wǎng)購(gòu)消費(fèi)與性別有關(guān);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)和為,等比數(shù)列的前項(xiàng)和為,,,.

(1),求的通項(xiàng)公式;

(2),.

【答案】(1);(2)21或.

【解析】試題分析:(1)設(shè)等差數(shù)列公差為,等比數(shù)列公比為,由已知條件求出,再寫(xiě)出通項(xiàng)公式;(2)由,求出的值,再求出的值,求出。

試題解析:設(shè)等差數(shù)列公差為,等比數(shù)列公比為,即.

(1)∵,結(jié)合

.

(2)∵,解得或3,

當(dāng)時(shí),,此時(shí);

當(dāng)時(shí),,此時(shí).

型】解答
結(jié)束】
20

【題目】如圖,已知直線與拋物線相交于兩點(diǎn), 且點(diǎn)的坐標(biāo)為.

1的值;

2為拋物線的焦點(diǎn), 為拋物線上任一點(diǎn),的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有4個(gè)人去參加娛樂(lè)活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.
(1)求這4個(gè)人中恰有2人去參加甲游戲的概率;
(2)求這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(3)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記ξ=|X﹣Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式;

(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;

(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò)1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= ,其中a>﹣1.若f(x)在R上是增函數(shù),則實(shí)數(shù)a的取值范圍是(
A.[e+1,+∞)
B.(e+1,+∞)
C.(e﹣1,+∞)
D.[e﹣1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量m=(cos,sin ),n=(2+sinx,2-cos),函數(shù)m·nx∈R.

(1) 求函數(shù)的最大值;

(2) 若 =1,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案