【題目】已知數(shù)列的前項(xiàng)和為,且滿足,求數(shù)列的通項(xiàng)公式.勤于思考的小紅設(shè)計(jì)了下面兩種解題思路,請(qǐng)你選擇其中一種并將其補(bǔ)充完整.

思路1:先設(shè)的值為1,根據(jù)已知條件,計(jì)算出_________, __________, _________

猜想: _______.

然后用數(shù)學(xué)歸納法證明.證明過程如下:

①當(dāng)時(shí),________________,猜想成立

②假設(shè)N*)時(shí),猜想成立,即_______

那么,當(dāng)時(shí),由已知,得_________

,兩式相減并化簡,得_____________(用含的代數(shù)式表示).

所以,當(dāng)時(shí),猜想也成立.

根據(jù)①和②,可知猜想對(duì)任何N*都成立.

思路2:先設(shè)的值為1,根據(jù)已知條件,計(jì)算出_____________

由已知,寫出的關(guān)系式: _____________________,

兩式相減,得的遞推關(guān)系式: ____________________

整理: ____________

發(fā)現(xiàn):數(shù)列是首項(xiàng)為________,公比為_______的等比數(shù)列.

得出:數(shù)列的通項(xiàng)公式____,進(jìn)而得到____________

【答案】 2 2

【解析】試題分析:思路1.由于,令,可求出的值,再令 ,可求出的值,再令,可求出的值,利用不完全歸納法,歸納猜想出,再用數(shù)學(xué)歸納法加以證明, 這是一種“歸納—猜想—證明”思維方式,從特殊到一般的歸納推理方式;思路2.采用構(gòu)造法直接求出數(shù)列得通項(xiàng)公式.

試題解析:思路1.由于,令, ;令 , , ,令 , ,則

,由此猜想 ;下面用數(shù)學(xué)歸納法證明,證明過程如下:

①當(dāng)時(shí), ,得 ,符合 ,猜想成立.

②假設(shè)N*)時(shí),猜想成立,即,

那么,當(dāng)時(shí),由已知,得 ,

,兩式相減并化簡,得 , (用含的代數(shù)式表示).所以,當(dāng)時(shí),猜想也成立.

根據(jù)①和②,可知猜想對(duì)任何N*都成立.

思路2. 先設(shè)的值為1,根據(jù)已知條件,計(jì)算出,

由已知,寫出的關(guān)系式: ,

兩式相減,得的遞推關(guān)系式: ,

整理:

發(fā)現(xiàn):數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列.

得出:數(shù)列的通項(xiàng)公式 ,進(jìn)而得到

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日 期

121

122

123

124

125

溫差°C

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2)若選取的是121日與125日的兩組數(shù)據(jù),請(qǐng)根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,恒有成立,求實(shí)數(shù)的取值范圍;

(2)若函數(shù)有兩個(gè)極值點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,現(xiàn)從中隨機(jī)抽取100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?/span>

成績分為優(yōu)秀、良好、及格三個(gè)等級(jí);橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?/span>.

)若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求的值;

)已知,求數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,四邊形ADEF是正方形,且BD平面CDE,H是BE的中點(diǎn),G是AE,DF的交點(diǎn)

(1)求證:GH平面CDE;

(2)求證:面ADEF面ABCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016·桂林高二檢測)如圖所示,在四邊形ABCD,AB=AD=CD=1,BD=,BDCD,將四邊形ABCD沿對(duì)角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD,則下列結(jié)論正確的是________.

(1)A′C⊥BD.(2)∠BA′C=90°.

(3)CA′與平面A′BD所成的角為30°.

(4)四面體A′-BCD的體積為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2014陜西理8】原命題為“若互為共軛復(fù)數(shù),則”,關(guān)于逆命題,否命題,逆否命題真假性的判斷依次如下,正確的是(

A. 真,假,真 B. 假,假,真

C. 真,真,假 D. 假,假,假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,求|a+b|和a+b與c的夾角;

(2)設(shè)O為△ABC的外心,已知AB=3,AC=4,非零實(shí)數(shù)x,y滿足=x+y,且x+2y=1,求cos ∠BAC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3-bx2+(2-b)x+1在x=x1處取得極大值,在x=x2處取得極小值,且0<x1<1<x2<2.

(1)證明:a>0;

(2)若z=a+2b,求z的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案