【題目】已知函數(shù)f(x)=ax3-bx2+(2-b)x+1在x=x1處取得極大值,在x=x2處取得極小值,且0<x1<1<x2<2.
(1)證明:a>0;
(2)若z=a+2b,求z的取值范圍.
【答案】見解析
【解析】
(1)證明 求函數(shù)f(x)的導(dǎo)數(shù)
f′(x)=ax2-2bx+2-b.
由函數(shù)f(x)在x=x1處取得極大值,
在x=x2處取得極小值,
知x1、x2是f′(x)=0的兩個(gè)根,
所以f′(x)=a(x-x1)(x-x2).
當(dāng)x<x1時(shí),f(x)為增函數(shù),f′(x)>0,
由x-x1<0,x-x2<0得a>0.
(2)解 在題設(shè)下,0<x1<1<x2<2等價(jià)于
即化簡得
此不等式組表示的區(qū)域?yàn)槠矫鎍Ob上的三條直線:
2-b=0,a-3b+2=0,4a-5b+2=0所圍成的△ABC的內(nèi)部,其三個(gè)頂點(diǎn)分別為A,B(2,2),C(4,2).
z在這三點(diǎn)的值依次為,6,8.
所以z的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且滿足,求數(shù)列的通項(xiàng)公式.勤于思考的小紅設(shè)計(jì)了下面兩種解題思路,請(qǐng)你選擇其中一種并將其補(bǔ)充完整.
思路1:先設(shè)的值為1,根據(jù)已知條件,計(jì)算出_________, __________, _________.
猜想: _______.
然后用數(shù)學(xué)歸納法證明.證明過程如下:
①當(dāng)時(shí),________________,猜想成立
②假設(shè)(N*)時(shí),猜想成立,即_______.
那么,當(dāng)時(shí),由已知,得_________.
又,兩式相減并化簡,得_____________(用含的代數(shù)式表示).
所以,當(dāng)時(shí),猜想也成立.
根據(jù)①和②,可知猜想對(duì)任何N*都成立.
思路2:先設(shè)的值為1,根據(jù)已知條件,計(jì)算出_____________.
由已知,寫出與的關(guān)系式: _____________________,
兩式相減,得與的遞推關(guān)系式: ____________________.
整理: ____________.
發(fā)現(xiàn):數(shù)列是首項(xiàng)為________,公比為_______的等比數(shù)列.
得出:數(shù)列的通項(xiàng)公式____,進(jìn)而得到____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人口老齡化的到來,我國的勞動(dòng)力人口在不斷減少,“延遲退休”已經(jīng)成為人們?cè)絹碓疥P(guān)心的話題,為了解公眾對(duì)“延遲退休”的態(tài)度,某校課外研究性學(xué)習(xí)小組在某社區(qū)隨機(jī)抽取了50人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理后制成下表:
年齡 | |||||
人數(shù) | 4 | 5 | 8 | 5 | 3 |
年齡 | |||||
人數(shù) | 6 | 7 | 3 | 5 | 4 |
經(jīng)調(diào)查年齡在,的被調(diào)查者中贊成“延遲退休”的人數(shù)分別是3人和2人,現(xiàn)從這兩組的被調(diào)查者中各隨機(jī)選取2人,進(jìn)行跟蹤調(diào)查.
(Ⅰ)求年齡在的被調(diào)查者中選取的2人都贊成“延遲退休”的概率;
(Ⅱ)若選中的4人中,不贊成“延遲退休”的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P以1cm/秒的速度沿折線BE-ED-DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q以2cm/秒的速度沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止.設(shè)P、Q同時(shí)出發(fā)t秒時(shí),△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖(2)(其中曲線OG為拋物線的一部分,其余各部分均為線段),則下列結(jié)論:①;②當(dāng)時(shí), ;③;④當(dāng)秒時(shí), ∽;⑤當(dāng)的面積為時(shí),時(shí)間的值是或;其中正確的結(jié)論是( )
A. ①⑤ B. ②⑤ C. ②③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某居民小區(qū)要建造一座八邊形的休閑小區(qū),它的主體造型的平面圖是由兩個(gè)相同的矩形ABCD和EFGH構(gòu)成的,是面積為200平方米的十字形地帶.計(jì)劃在正方MNPQ上建一座花壇,造價(jià)是每平方米4 200元,在四個(gè)相同的矩形(圖中陰影部分)上鋪上花崗巖地坪,造價(jià)是每平方米210元,再在四個(gè)空角上鋪上草坪,造價(jià)是每平方米80元.
(1)設(shè)總造價(jià)是S元,AD長為x米,試建立S關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時(shí),S最小?并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高職院校進(jìn)行自主招生文化素質(zhì)考試,考試內(nèi)容為語文、數(shù)學(xué)、英語三科,總分為200分.現(xiàn)從上線的考生中隨機(jī)抽取20人,將其成績用莖葉圖記錄如下:
男 | 女 | |||||||||||
15 | 6 | |||||||||||
5 | 4 | 16 | 3 | 5 | 8 | |||||||
8 | 2 | 17 | 2 | 3 | 6 | 8 | 8 | 8 | ||||
6 | 5 | 18 | 5 | 7 | ||||||||
19 | 2 | 3 |
(Ⅰ)計(jì)算上線考生中抽取的男生成績的方差;(結(jié)果精確到小數(shù)點(diǎn)后一位)
(Ⅱ)從上述莖葉圖180分以上的考生中任選2人作為考生代表出席座談會(huì),求所選考生恰為一男一女的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種電子儀器的固定成本為20 000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿足函數(shù):
R(x)=
其中x是儀器的月產(chǎn)量.
(1)將利潤表示為月產(chǎn)量的函數(shù)f(x);
(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲得利潤最大?最大利潤為多少元?(總收益=總成本+利潤)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推動(dòng)乒乓球運(yùn)動(dòng)的發(fā)展,某乒乓球比賽允許不同協(xié)會(huì)的運(yùn)動(dòng)員組隊(duì)參加.現(xiàn)有來自甲協(xié)會(huì)的運(yùn)動(dòng)員名,其中種子選手名;乙協(xié)會(huì)的運(yùn)動(dòng)員名,其中種子選手名.從這名運(yùn)動(dòng)員中隨機(jī)選擇人參加比賽.
(1)設(shè)為事件“選出的人中恰有名種子選手,且這名種子選手來自同一個(gè)協(xié)會(huì)”求事件發(fā)生的概率;
(2)設(shè)為選出的人中種子選手的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線在點(diǎn)處的切線斜率為0.
(1)討論函數(shù)的單調(diào)性;
(2)在區(qū)間上沒有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com