正項(xiàng)等差數(shù)列{an}中,a7a9+a7a6+a8a9+a8a6=16,則S14=
28
28
分析:由an=a1+(n-1)d,知16=a7a9+a7a6+a8a9+a8a6=(a7+a8)(a9+a6)=(2a1+13d)2,故4=2a1+13d,由此能求出S14
解答:解:∵an=a1+(n-1)d,
∴16=a7a9+a7a6+a8a9+a8a6
=a7(a9+a6)+a8(a9+a6
=(a7+a8)(a9+a6
=(a1+6d+a1+7d)(a1+8d+a1+5d)
=(2a1+13d)2,
∴4=2a1+13d,
∴S14=14a1+
14×13
2
d
=7(2a1+13d)=7×4=28.
故答案為:28.
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)等差數(shù)列an的前n項(xiàng)和為Sn,若S3=12,且2a1,a2,a3+1成等比數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
an3n
,記數(shù)列bn的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)正項(xiàng)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S2012=2012,則
1
a3
+
1
a2010
的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=12,且2a1,a2,a3+1成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)記bn=
an
3n
的前n項(xiàng)和為Tn,求證Tn
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•萬(wàn)州區(qū)一模)已知公差不為0的正項(xiàng)等差數(shù)列{an}中,Sn為其前n項(xiàng)和,若lga1,lga2,lga4也成等差數(shù)列,a5=10,則S5等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•成都一模)已知非零向量
OA
、
OB
OC
、
OD
滿足:
OA
OB
Z+β
OC
Z+γ
OD
Z(α,β,γ∈R),B、C、D為不共線三點(diǎn),給出下列命題:
①若α=
3
2
,β=
1
2
,γ=-1,則A、B、C、D四點(diǎn)在同一平面上;
②若α=β=γ=1,|
OB
Z|+|
OC
|+|
OD
|=1,<
OB
,
OD
>=<
OC
,
OD
>=
π
2
,<
OB
OC
>=
π
3
,則|
OA
|=2;
③已知正項(xiàng)等差數(shù)列{an}(n∈N*Z),若α=a2,β=a2009,γ=0,且A、B、C三點(diǎn)共線,但O點(diǎn)不在直線BC上,則
1
a3
+
4
a2008
的最小值為10;
④若α=
4
3
,β=-
1
3
Z,γ=0,則A、B、C三點(diǎn)共線且A分
BC
所成的比λ一定為-4
其中你認(rèn)為正確的所有命題的序號(hào)是
①②
①②

查看答案和解析>>

同步練習(xí)冊(cè)答案