7.已知四棱錐P-ABCD的五個(gè)頂點(diǎn)都在球O的球面上,底面ABCD是矩形,平面PAD垂直于平面ABCD,在△PAD中,PA=PD=2,∠APD=120°,AB=2,則球O的表面積等于(  )
A.16πB.20πC.24πD.36π

分析 求出△PAD所在圓的半徑,利用勾股定理求出球O的半徑R,即可求出球O的表面積.

解答 解:令△PAD所在圓的圓心為O1,則
因?yàn)镻A=PD=2,∠APD=120°,所以AD=2$\sqrt{3}$,所以圓O1的半徑r=$\frac{1}{2}×\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}$=2,
因?yàn)槠矫鍼AD⊥底面ABCD,
所以O(shè)O1=$\frac{1}{2}$AB=1,
所以球O的半徑R=$\sqrt{4+1}$=$\sqrt{5}$,
所以球O的表面積=4πR2=20π.
故選:B.

點(diǎn)評(píng) 本題考查球O的表面積,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知點(diǎn)P(2,1),Q(-2,-2),過(guò)點(diǎn)(0,5)的直線l與線段PQ有公共點(diǎn),則直線l的斜率k的取值范圍是k≤-2或k≥$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知等比數(shù)列{an}各項(xiàng)均為正數(shù),且a1,$\frac{1}{2}$a3,a2成等差數(shù)列,求$\frac{{a}_{3}+{a}_{4}}{{a}_{4}+{a}_{5}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列命題正確的個(gè)數(shù)是( 。
①“在三角形ABC中,若sinA>sinB,則A>B”的否命題是真命題;
②命題p:x≠2或y≠3,命題q:x+y≠5,則p是q的必要不充分條件;
③存在實(shí)數(shù)x0,使x02+x0+1<0;
④命題“若m>1,則x2-2x+m=0有實(shí)根”的逆否命題是真命題.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)$y={log_{\frac{1}{4}}}({{x^2}-4x-5})$的單調(diào)增區(qū)間是(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知點(diǎn)(-3,-1)在直線3x-2y-a=0的上方,則a的取值范圍為(  )
A.a>-7B.a≥-7C.a<-7D.a≤-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知冪函數(shù)y=f(x)的圖象過(guò)(9,3)點(diǎn),則$f(\frac{1}{3})$=(  )
A.$\sqrt{3}$B.$\frac{1}{3}$C.$\frac{1}{9}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.為了對(duì)某研究性課題進(jìn)行研究,用分層抽樣方法從某校高中各年級(jí)中,抽取若干名學(xué)生組成研究小組,有關(guān)數(shù)據(jù)見(jiàn)表(單位:人)     
(1)求x,y;
(2)若從高一、高二抽取的人中選2人作專題發(fā)言,求這2人都來(lái)自高一的概率.
年 級(jí)相關(guān)人數(shù)抽取人數(shù)
高一54x
高二362
高三18y

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.給出下列四個(gè)命題:
①有兩個(gè)側(cè)面是矩形的棱柱是直棱柱
②側(cè)面都是等腰三角形的棱錐是正棱錐
③側(cè)面都是矩形的直四棱柱是長(zhǎng)方體
④底面為正多邊形,且有相鄰兩個(gè)側(cè)面與底面垂直的棱柱是正棱柱
其中不正確的命題為①②③.

查看答案和解析>>

同步練習(xí)冊(cè)答案