1.已知直線l:mx+2y+6=0,向量(1-m,1)與l平行,則m的值為(  )
A.-1B.1C.2D.-1或2

分析 利用直線的平行向量與斜率的關(guān)系即可得出.

解答 解:當m=1時,直線l為:y=-3,向量(0,1)與l垂直,
當m≠1時,-$\frac{m}{2}$=$\frac{1}{1-m}$,解得m=-1,或m=2,
故選:D.

點評 本題考查了直線的平行向量與斜率的關(guān)系,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.作已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點為F1,F(xiàn)2,離心率為$\frac{\sqrt{2}}{2}$,過F2的直線l交C于M,N兩點,若△MF1N的周長為8.
(1)求橢圓C的標準方程;
(2)設O為原點,若點A在直線y=2上,點B在橢圓C上,且OA⊥OB,求線段AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下表是某公司1-8月份的銷售額,通過回歸分析得出回歸方程為$\widehat{y}$=0.96x+4.54,預測9月份的銷售額是(  )萬元.
月份12345678
萬元5688.510.511.58.513
A.13B.13.18C.13.5D.14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.若函數(shù)f(x)=log2$\frac{x{-a}^{\frac{1}{2}}}{x{-a}^{\frac{1}{3}}}$且0<a<1
(1)寫出f(x)的定義域;
(2)若f(x)定義域關(guān)于點($\frac{1}{2}$${a}^{\frac{1}{2}}$+$\frac{1}{4}$${a}^{\frac{1}{6}}$,0)對稱,求a的值;
(3)在(2)條件下,寫出f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知圓C的圓心在直線3x-y=0上,半徑為1且與直線x-y=0相切,則圓C的標準方程是(x+$\frac{\sqrt{2}}{2}$)2+(y+$\frac{3\sqrt{2}}{2}$)2=1或(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{3\sqrt{2}}{2}$)2=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若x∈[0,2π),則函數(shù)f(x)=$\sqrt{sinx}$$+\sqrt{tanx}$的定義域是[0,$\frac{π}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知點F1(-2$\sqrt{2}$,0),F(xiàn)2(2$\sqrt{2}$,0),動點P為曲線C上任意點且滿足|PF1|+|PF2|=4$\sqrt{3}$.
(1)求曲線C的方程;
(2)若斜率為1的直線l與曲線C交于A、B兩點,且P(-3,2)在線段AB的垂直平分線上,求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.m∈R,“函數(shù)y=2x+m-1沒有零點”是“對任意的x>1,logmx>0恒成立”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E為AA1的中點.
(1)求異面直線BE與CD1所成角的余弦值.
(2)求EC1與平面DCC1D1所成角的正弦值.

查看答案和解析>>

同步練習冊答案