精英家教網 > 高中數學 > 題目詳情
一個幾何體的三視圖如圖所示,則這個幾何體的表面積為( 。
A、6+
5
B、6+2
5
C、8+
5
D、8+2
5
考點:由三視圖求面積、體積
專題:計算題,空間位置關系與距離
分析:三視圖中長對正,高對齊,寬相等;由三視圖想象出直觀圖,一般需從俯視圖構建直觀圖,該幾何體為三棱柱.
解答: 解:該幾何體為三棱柱,
上下底面面積之和為2×
1
2
×2×1=2,
側面面積為:(2+1+
5
)×2=6+6
5

故這個幾何體的表面積為8+6
5

故選C.
點評:三視圖中長對正,高對齊,寬相等;由三視圖想象出直觀圖,一般需從俯視圖構建直觀圖,本題考查了學生的空間想象力,識圖能力及計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

某城市的交通道路如圖,從城市的東南角A到城市的西北角B,不經過十字道路維修處C,最近的走法種數有
 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在三角形ABC中,若AC=3,BC=4,AB=5,以AB所在直線為軸,將此三角形旋轉一周,求所得旋轉體的表面積和體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在(-∞,+∞)上的偶函數f(x)滿足f(x+1)=-f(x),且在[-1,0]上是增函數,下面是關于f(x)的判斷:
①f(x)是周期函數;
②f(x)的圖象關于直線x=1對稱; 
③f(x)在[0,1]上是增函數;④f(2)=f(0).
其中正確的判斷是
 
(把你認為正確的判斷都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知關于x,y的二元二次方程x2+y2+2x-4y+k=0(k∈R)表示圓C.
(1)求圓心C的坐標;
(2)求實數k的取值范圍;
(3)是否存在實數k,使直線l:x-2y+4=0與圓C相交于M、N兩點,且OM⊥ON(O為坐標原點)?若存在,請求出k的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),且x∈[0,
π
2
],則f(x)=
a
b
-4|
a
+
b
|的最小值為( 。
A、7
B、-7
C、6
D、
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知動圓M和圓C1:(x+1)2+y2=36內切,并和圓C2:(x-1)2+y2=4外切,動圓圓心M的軌跡方程為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

若數列{an}(n∈N*)滿足3a3=7a5>0,三點P(n,an)、Q(n+1,an+1)、R(n+2,an+2)在一條直線上.
(1)若a1=33,求通項公式an;
(2)若bn=anan+1an+2(n∈N*),數列{bn}的項是否均為正數?如果是,則說明理由;如果不是,則數列
{bn}中有多少項為正數?

查看答案和解析>>

同步練習冊答案