【題目】如圖,在四棱錐中,平面平面,是邊長(zhǎng)為的等邊三角形,,,點(diǎn)的中點(diǎn).

1)求證:平面;

2)求證:

3)求二面角的余弦值.

【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(3

【解析】

1)取中點(diǎn),連結(jié),,可證明出,,得到為平行四邊形,通過(guò),證明出平面

2)取中點(diǎn),連結(jié),由平面平面,得到平面,從而以為原點(diǎn),建立空間直角坐標(biāo)系,得到,的坐標(biāo),然后通過(guò),證明

(3)證明出是平面的法向量,求出平面的法向量,通過(guò)法向量的夾角公式,得到二面角的余弦值.

1)證明:取中點(diǎn),連結(jié),,

在等邊三角形中,,

又因?yàn)?/span>,

所以,又因?yàn)?/span>,

所以,

所以為平行四邊形,

所以,

又因?yàn)?/span>平面平面,

所以平面

2)證明:取中點(diǎn),連結(jié),,

因?yàn)槿切?/span>是等邊三角形

所以,

因?yàn)樗倪呅?/span>滿足,,,

所以,,

又因?yàn)槠矫?/span>平面,平面平面,

平面

所以平面,

,,所在直線為,,軸,建立空間直角坐標(biāo)系,

,,,

所以,

所以

所以;

3)由(2)知,,

因?yàn)榈冗吶切?/span>中,的中點(diǎn),所以

平面,

所以平面,

所以是平面的法向量,

,,

設(shè)平面的法向量為

,即

,得,

,

又因?yàn)槎娼?/span>為銳二面角,

所以二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)當(dāng)時(shí),求不等式的解集;

2)若不等式的解集包含[–1,1],求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開(kāi)辟為水果園種植桃樹(shù),已知角A的長(zhǎng)度均大于200米,現(xiàn)在邊界APAQ處建圍墻,在PQ處圍竹籬笆.

1)若圍墻AP,AQ總長(zhǎng)度為200米,如何圍可使得三角形地塊APQ的面積最大?

2)已知AP段圍墻高1米,AQ段圍墻高1.5米,造價(jià)均為每平方米100.若圍圍墻用了20000元,問(wèn)如何圍可使竹籬笆用料最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A與圓 相切,且與圓 相內(nèi)切,記圓心的軌跡為曲線.設(shè)為曲線上的一個(gè)不在軸上的動(dòng)點(diǎn), 為坐標(biāo)原點(diǎn),過(guò)點(diǎn)的平行線交曲線, 兩個(gè)不同的點(diǎn).

(Ⅰ)求曲線的方程;

(Ⅱ)試探究的比值能否為一個(gè)常數(shù)?若能,求出這個(gè)常數(shù),若不能,請(qǐng)說(shuō)明理由;

(Ⅲ)記的面積為, 的面積為,令,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】第七屆世界軍人運(yùn)動(dòng)會(huì)于20191018日至20191027日在中國(guó)武漢舉行,第七屆世界軍人運(yùn)動(dòng)會(huì)是我國(guó)第一次承辦的綜合性國(guó)際軍事體育賽事,也是繼北京奧運(yùn)會(huì)后我國(guó)舉辦的規(guī)模最大的國(guó)際體育盛會(huì).經(jīng)過(guò)激烈角逐,獎(jiǎng)牌榜的前6名依次為中國(guó)俄羅斯巴西法國(guó)波蘭和德國(guó).其中德國(guó)隊(duì)共有45名運(yùn)動(dòng)員獲得了獎(jiǎng)牌,其中金牌10枚銀牌15枚銅牌20枚,某大學(xué)德語(yǔ)系同學(xué)利用分層抽樣的方式從德國(guó)隊(duì)獲獎(jiǎng)選手中抽取9名獲獎(jiǎng)代表.

1)請(qǐng)問(wèn)這9名獲獎(jiǎng)代表中獲金牌銀牌銅牌的人數(shù)分別為多少人?

2)從這9人中隨機(jī)抽取3人,記這3人中銀牌選手的人數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“綠水青山就是金山銀山”的理念越來(lái)越深入人心,據(jù)此,某網(wǎng)站調(diào)查了人們對(duì)生態(tài)文明建設(shè)的關(guān)注情況,調(diào)查數(shù)據(jù)表明,參與調(diào)查的人員中關(guān)注生態(tài)文明建設(shè)的約占80%.現(xiàn)從參與調(diào)查的關(guān)注生態(tài)文明建設(shè)的人員中隨機(jī)選出200人,并將這200人按年齡(單位:歲)分組:第1[15,25),第2[25,35),第3[35,45),第4[45,55),第5[55,65],得到的頻率分布直方圖如圖所示.

(Ⅰ)求這200人的平均年齡(每一組用該組區(qū)間的中點(diǎn)值作為代表)和年齡的中位數(shù)(保留一位小數(shù));

(Ⅱ)現(xiàn)在要從年齡在第1,2組的人員中用分層抽樣的方法抽取5人,再?gòu)倪@5人中隨機(jī)抽取3人進(jìn)行問(wèn)卷調(diào)查,求抽取的3人中恰有2人的年齡在第2組中的概率;

(Ⅲ)若從所有參與調(diào)查的人(人數(shù)很多)中任意選出3人,設(shè)這3人中關(guān)注生態(tài)文明建設(shè)的人數(shù)為X,求隨機(jī)變量X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,底面四邊形為直角梯形,,,為線段上一點(diǎn).

(1)若,則在線段上是否存在點(diǎn),使得平面?若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由

(2)己知,若異面直線角,二而角的余弦值為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過(guò)點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于MN兩點(diǎn)。

(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:

(2)若成等比數(shù)列,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人經(jīng)營(yíng)一個(gè)抽獎(jiǎng)游戲,顧客花費(fèi)3元錢可購(gòu)買一次游戲機(jī)會(huì),每次游戲中,顧客從標(biāo)有黑1、黑2、黑3、黑4、紅1、紅3的6張卡片中隨機(jī)抽取2張,并根據(jù)摸出的卡片的情況進(jìn)行兌獎(jiǎng),經(jīng)營(yíng)者將顧客抽到的卡片情況分成以下類別::同花順,即卡片顏色相同且號(hào)碼相鄰;:同花,即卡片顏色相同,但號(hào)碼不相鄰;:順子,即卡片號(hào)碼相鄰,但顏色不同;:對(duì)子,即兩張卡片號(hào)碼相同;:其它,即,,,以外的所有可能情況,若經(jīng)營(yíng)者打算將以上五種類別中最不容易發(fā)生的一種類別對(duì)應(yīng)顧客中一等獎(jiǎng),最容易發(fā)生的一種類別對(duì)應(yīng)顧客中二等獎(jiǎng),其他類別對(duì)應(yīng)顧客中三等獎(jiǎng).

(1)一、二等獎(jiǎng)分別對(duì)應(yīng)哪一種類別?(寫出字母即可)

(2)若經(jīng)營(yíng)者規(guī)定:中一、二、三等獎(jiǎng),分別可獲得價(jià)值9元、3元、1元的獎(jiǎng)品,假設(shè)某天參與游戲的顧客為300人次,試估計(jì)經(jīng)營(yíng)者這一天的盈利.

查看答案和解析>>

同步練習(xí)冊(cè)答案