分析 (1)化簡得f(x)=1+sin2x+cos2x-1=$\sqrt{2}$sin(2x+$\frac{π}{4}$),令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{4}$≤$\frac{π}{2}$+2kπ解得增區(qū)間;
(2)根據(jù)x的范圍求出2x+$\frac{π}{4}$的范圍,結(jié)合正弦函數(shù)的單調(diào)性求出f(x)的最值.
解答 解:(1)f(x)=(sinx+cosx)2+2cos2x-2=1+sin2x+cos2x-1=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
∴f(x)的最小正周期是$\frac{2π}{2}$=π.
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,解得-$\frac{3π}{8}$+kπ≤x≤$\frac{π}{8}$+kπ,
∴f(x)的單調(diào)增區(qū)間是[-$\frac{3π}{8}$+kπ,$\frac{π}{8}$+kπ],k∈Z.
(2)∵x∈[$\frac{π}{4}$,$\frac{3π}{4}$],∴2x+$\frac{π}{4}$∈[$\frac{3π}{4}$,$\frac{7π}{4}$],
∴當(dāng)2x+$\frac{π}{4}$=$\frac{3π}{4}$時(shí),f(x)取得最大值1,
當(dāng)2x+$\frac{π}{4}$=$\frac{3π}{2}$時(shí),f(x)取得最小值-$\sqrt{2}$.
點(diǎn)評(píng) 本題考查了三角函數(shù)的恒等變換和性質(zhì),是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等于1m | B. | 大于1m | C. | 小于1m | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{2π}{3}$] | B. | [$\frac{π}{2}$,$\frac{2π}{3}$] | C. | [$\frac{2π}{3}$,π] | D. | [$\frac{π}{2}$,$\frac{5π}{6}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=a|x| | B. | y=1+a|x| | C. | y=logax | D. | y=loga(1-x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 既非充分又非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{3}{16}$ | C. | $\frac{1}{4}$ | D. | $\frac{27}{64}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com