已知函數(shù)f(x)=log2
x-1
x+2
,x∈[2,4],
(1)判斷函數(shù)f(x)的單調(diào)性,并證明;
(2)求函數(shù)f(x)的最大值和最小值.
考點(diǎn):函數(shù)單調(diào)性的性質(zhì),函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)令t=
x-1
x+2
=1-
3
x+2
,則函數(shù)f(x)=log2t.根據(jù)函數(shù)t在[2,4]上單調(diào)遞增,根據(jù)復(fù)合函數(shù)的單調(diào)性可得函數(shù)f(x)在[2,4]上單調(diào)遞增.
(2)由于函數(shù)f(x)[2,4]上單調(diào)遞增,求得函數(shù)f(x)的最大值和最小值.
解答: 解:(1)令t=
x-1
x+2
=1-
3
x+2
,則函數(shù)f(x)=log2t.
顯然函數(shù)t在[2,4]上單調(diào)遞增,根據(jù)復(fù)合函數(shù)的單調(diào)性可得函數(shù)f(x)在[2,4]上單調(diào)遞增.
(2)由于函數(shù)f(x)在[2,4]上單調(diào)遞增,∴f(x)max=f(4)=-1,f(x)min=f(2)=-2.
點(diǎn)評(píng):本題主要考查復(fù)合函數(shù)的單調(diào)性的判斷和證明,利用函數(shù)的單調(diào)性求函數(shù)的最值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的體積為20cm3,三視圖如圖所示,則h=(  )cm.
A、2B、4C、6D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x
1+x
,數(shù)列{an}為首項(xiàng)是1,以f(1)為公比的等比數(shù)列;數(shù)列{bn}中b1=
1
2
,且bn+1=f(bn).
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令cn=an
1
bn
-1),{cn}的前n項(xiàng)和為Tn,證明:對(duì)?n∈N+有Tn<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=1n(x+1)-ax(a∈R)
(1)求y=f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時(shí),求f(x)在定義域上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2sinx,
3
cosx),
b
=(-sinx,2sinx),函數(shù)f(x)=
a
b

(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(C)=1,c=1,若S△ABC=
3
2
,且a>b,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p:函數(shù)f(x)=
ax-1
的定義域?yàn)椋?∞,0],q:關(guān)于x的不等式ax2-x+a>0的解集為R.若p∨q是真命題,p∧q是假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cosωxsin(ωx+
π
6
)+cos4ωx-sin4ωx(ω>0)的兩條相鄰對(duì)稱軸之間的距離等于
π
2
,
(Ⅰ)求f(x)的解析式;
(Ⅱ)在△ABC中,a,b,c分別是A,B,C的對(duì)邊,且銳角B滿足f(B)=
1
2
,b=
7
,a+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=
a
x
+lnx-1,其中a>0,
(1)求函數(shù)f(x)在區(qū)間(0,e]上的最小值;
(2)求證:1+
1
2
+
1
3
+…+
1
n
≥n-ln(n!)(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+2x2-ax+1在(-1,1)上存在極值點(diǎn),則實(shí)數(shù)a的取值集合為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案