分析 (1)由正弦定理化簡已知等式可得$\sqrt{3}$sinAcosC-2sinBcosA+$\sqrt{3}$sinCcosA=0,由三角函數恒等變換的應用可得$\sqrt{3}$sinB=2sinBcosA,由sinB≠0,解得cosA=$\frac{\sqrt{3}}{2}$,結合范圍A∈(0,π),即可求A.
(2)由(1)可得:A=$\frac{π}{6}$.由余弦定理結合已知可得:(2-$\sqrt{3}$)bc=b2+c2-$\sqrt{3}$bc,解得:(b-c)2=0,即b=c,從而得解.
解答 解:(1)△ABC中,∵$\sqrt{3}$acosC-2bcosA+$\sqrt{3}$ccosA=0,
由正弦定理,得$\sqrt{3}$sinAcosC-2sinBcosA+$\sqrt{3}$sinCcosA=0,
$\sqrt{3}$(sinAcosC+sinCcosA)=$\sqrt{3}$sinB=2sinBcosA
∵sinB≠0,
∴cosA=$\frac{\sqrt{3}}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{6}$.
(2)△ABC是等腰三角形.
∵由(1)可得:A=$\frac{π}{6}$.
∴由余弦定理可得:a2=b2+c2-2bccosA=b2+c2-$\sqrt{3}$bc,
又∵a2=(2-$\sqrt{3}$)bc,
∴(2-$\sqrt{3}$)bc=b2+c2-$\sqrt{3}$bc,解得:(b-c)2=0,即b=c.
故△ABC是等腰三角形.
點評 本題主要考查了正弦定理,余弦定理,三角函數恒等變換的應用,考查了計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y=at | B. | y=logat | C. | y=at3 | D. | y=a$\sqrt{t}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com