已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期為2,且當x=時,f(x)的最大值為2.
(1)求f(x)的解析式.
(2)在閉區(qū)間上是否存在f(x)的對稱軸?如果存在求出其對稱軸.若不正在,請說明理由.
科目:高中數(shù)學 來源: 題型:
已知函數(shù)f(x)=x3-ax2-3x.
(1)若f(x)在[1,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(2)若x=3是f(x)的極值點,求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知α為銳角,且2tan(π-α)-3cos+5=0,tan(π+α)+6sin(π+β)=1,則sin α的值是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知函數(shù)f(x)=sin x+cos x,x∈R.
(1)求的值;
(2)試寫出一個函數(shù)g(x),使得g(x)f(x)=cos 2x,并求g(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
.函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0)的部分圖像如圖所示,則f(0)的值是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
我國是世界上嚴重缺水的國家之一,城市缺水問題較為突出.某市為了節(jié)約生活用水,計劃在本市試行居民生活用水定額管理(即確定一個居民月均用水量標準〜用水量不超過a的部分按照平價收費,超過a的部分按照議價收費).為了較為合理地確定出這個標準,通過抽樣獲得了 100位居民某年的月均用水量(單位:t),制作了頻率分布直方圖,
(I)由于某種原因頻率分布直方圖部分數(shù)據(jù)丟失,請在圖中將其補充完整;
(II)用樣本估計總體,如果希望80%的居民每月的用水量不超出標準,則月均用水量的最低標準定為多少噸,并說明理由;
(III)若將頻率視為概率,現(xiàn)從該市某大型生活社區(qū)隨機調(diào)查3位居民的月均用水量(看作有放回的抽樣),其中月均用水量不超過(II)中最低標準的人數(shù)為x,求x的分布列和均值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com