【題目】已知

1)當為常數(shù),且在區(qū)間變化時,求的最小值;

2)證明:對任意的,總存在,使得

【答案】(1);(2)證明略.

【解析】

試題分析:(1)當為常數(shù)時,則函數(shù)即為關于的函數(shù),求出此函數(shù)在區(qū)間的單調(diào)性,即可求得函數(shù)的最小值;

(2)設,先求函數(shù)的單調(diào)性,再結合零點存在性定理,即可證明.

試題解析:(1)當為常數(shù)時,

,

,上遞增,其最小值

(2)令

,即時,在區(qū)間內(nèi)單調(diào)遞減,

,

所以對任意在區(qū)間內(nèi)均存在零點,即存在,使得

,即時,內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,

所以時,函數(shù)取最小值,

,

,則,

所以內(nèi)存在零點;

,則,所以內(nèi)存在零點,

所以,對任意在區(qū)間內(nèi)均存在零點,即存在,使得

結合①②,對任意的,總存在,使得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且

(1)求證:不論為何值,總有平面BEF⊥平面ABC;

(2)當λ為何值時,平面BEF⊥平面ACD ?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)某電子商務平臺的調(diào)查統(tǒng)計顯示,參與調(diào)查的1000位上網(wǎng)購物者的年齡情況如圖.

(1)已知、三個年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,的值

(2)該電子商務平臺將年齡在之間的人群定義為高消費人群,其他的年齡段定義為潛在消費人群,為了鼓勵潛在消費人群的消費該平臺決定發(fā)放代金券,高消費人群每人發(fā)放50元的代金券,潛在消費人群每人發(fā)放80元的代金券,已經(jīng)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購物者中抽取了10人,現(xiàn)在要在這10人中隨機抽取3人進行回訪,求此三人獲得代金券總和的分布列與數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)某電子商務平臺的調(diào)查統(tǒng)計顯示,參與調(diào)查的位上網(wǎng)購物者的年齡情況如右圖.

1已知、、三個年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,求的值;

2該電子商務平臺將年齡在之間的人群定義為高消費人群,其他的年齡段定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發(fā)放代金券,高消費人群每人發(fā)放元的代金券,潛在消費人群每人發(fā)放元的代金券.已經(jīng)采用分層抽樣的方式從參與調(diào)查的位上網(wǎng)購物者中抽取了人,現(xiàn)在要在這人中隨機抽取人進行回訪,求此三人獲得代金券總和的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列滿足,數(shù)列滿足.

(1)求數(shù)列, 的通項公式;

(2)令,求數(shù)列的前項和;

(3)若,求對所有的正整數(shù)都有成立的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若的一個極值點到直線的距離為1,求的值;

(2)求方程的根的個數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 ,函數(shù)的圖象過點,點與其相鄰的最高點的距離為.

(1)求的單調(diào)遞增區(qū)間;

(2)計算;

(3)設函數(shù),試討論函數(shù)在區(qū)間上的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,函數(shù),自然數(shù)的底數(shù)),函數(shù)圖象與函數(shù)圖象在有公共的切線.

值;

討論函數(shù)單調(diào)性;

證明:當時,區(qū)間內(nèi)恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,橢圓和拋物線交于兩點,且直線恰好通過橢圓的右焦點.

1求橢圓的標準方程;

2經(jīng)過橢圓右焦點的直線和橢圓交于兩點,點在橢圓上,且,

其中為坐標原點,求直線的斜率.

查看答案和解析>>

同步練習冊答案