已知P(-2,-2),Q(0,-1),取一點R(2,m),要使PR+RQ最小,求m的值.
考點:兩點間距離公式的應(yīng)用
專題:計算題,空間位置關(guān)系與距離
分析:求出Q(0,-1)關(guān)于直線x=2的對稱點的坐標,可得直線PQ′的方程,令x=2,即可得出結(jié)論.
解答: 解:由題意,Q(0,-1)關(guān)于直線x=2的對稱點的坐標為Q′(4,-1),
∴直線PQ′的方程為x-6y-10=0,
x=2時,y=-
4
3
,
∴要使PR+RQ最小,m的值為-
4
3
點評:本題考查直線的對稱性,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
y2
a2
+
x2
b2
=1(a>b>0)的離心率為
6
3
,F(xiàn)為橢圓在x軸正半軸上的焦點,M、N兩點在橢圓C上,且
MF
FN
(λ>0),定點A(-4,0).
(Ⅰ)求證:當λ=1時
MN
AF
;
(Ⅱ)若當λ=1時有
AM
AN
=
106
3
,求橢圓C的方程;
(Ⅲ)在(Ⅱ)的橢圓中,當M、N兩點在橢圓C上運動時,試判斷
AM
AN
×tan∠MAN是否有最大值,若存在,求出最大值,并求出這時M、N兩點所在直線方程,若不存在,給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-
1
2
x2-2x-
2
3

(1)求函數(shù)f(x)的單調(diào)遞增、遞減區(qū)間;
(2)當x∈[-1,1]時,f(x)<m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠生產(chǎn)新產(chǎn)品需一種新零件,可外購也可自產(chǎn),如果外購每個價格為1.10元,如果自產(chǎn)固定成本將增加800元,并且生產(chǎn)這種零件的每個材料費和勞力費等支出合計0.06元,試決定該廠自產(chǎn)還是外購這種零件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x2+1),g(x)=
1
x2-1
+a,求f(x)=g(x)的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對于?x∈R使得丨x-2a丨+x>3恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一束光線從點F1(-1,0)出發(fā),經(jīng)直線l:x+2y+6=0上一點M反射后,恰好穿過點F2(1,0).
(1)求點F1關(guān)于直線l的對稱點F′1的坐標;
(2)求以F1、F2為焦點且過點M的橢圓C的方程;
(3)若P是(2)中橢圓C上的動點,求
PF1
PF2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,
AN
=
1
3
NC
,P是BN上的一點,若
AP
=m
AB
+
2
9
AC
,則實數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1+sin(a-2π)•sin(π+a)-2cos2(-a)=
 

查看答案和解析>>

同步練習(xí)冊答案