一只螞蟻在三邊長分別為3、4、5的三角形面內(nèi)爬行,某時間該螞蟻距離三角形的三個頂點的距離均超過1的概率為
 
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:求出三角形的面積;再求出據(jù)三角形的三頂點距離小于等于1的區(qū)域為三個扇形,三個扇形的和是半圓,求出半圓的面積;利用對理事件的概率公式及幾何概型概率公式求出恰在離三個頂點距離都大于1的地方的概率.
解答: 解:三角形ABC的面積為
1
2
×3×4
=6,
離三個頂點距離都不大于1的地方的面積為S=
1
2
×π×12
=
π
2
,
所以其恰在離三個頂點距離都大于1的地方的概率為
P=1-
π
2
6
=1-
π
12
,
故答案為:1-
π
12
點評:本題考查幾何概型概率公式、對立事件概率公式、三角形的面積公式、扇形的面積公式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某部門為了了解用電量y(單位:度)與氣溫x(單位:℃)之間的關系,隨機統(tǒng)計了某4天的用電量與當天氣溫,因某天統(tǒng)計的用電量數(shù)據(jù)丟失,用t表示,如下表:
氣溫(℃)181310-1
用電量(度)24t3864
(1)由以上數(shù)據(jù),求這4天氣溫的標準差(結果用根式表示).
(2)若用電量與氣溫之間具有較好的線性相關關系,回歸直線方程為
y
=-2x+b,且預測氣溫為-4℃時,用電量為2t度.求t、b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P(x,y),A(-1,0),向量
PA
與向量
m
=(1,1)共線.
(1)求y關于x的函數(shù);
(2)已知點B(1,2),請在直線y=3x上找一點C,使得
PB
PC
>0時x的取值集合為{x|x<-1或x>1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

3名男生和3名女生站成一排,3名女生中有且只有2名相鄰,則不同的排法種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在(0,+∞)上的非負可導函數(shù),且滿足xf′(x)≤f(x),對任意的正數(shù)a,b(a≤b),
有下列四個命題:
①af(a)≤bf(b);
②af(a)≥bf(b);
③af(b)≥bf(a);
④af(b)≤bf(a)中,
真命題的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

無論a,b取何實數(shù),直線ax+by+b-a=0都過一定點P,則P點坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方形內(nèi)有一扇形,扇形對應的圓心是正方形的一頂點,半徑為正方形的邊長.在這個圖形上隨機撒一粒黃豆,它落在陰影部分的概率為
 
.(用分數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合A={2,5,8},B={1,3,5,7},那么A∪B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
15+7x-2x2
-lg(-x2+6x)的定義域為
 

查看答案和解析>>

同步練習冊答案