直線x=ky+3與雙曲線
x2
9
-
y2
4
=1
只有一個公共點,則k的值有( 。
A.1個B.2個C.3個D.無數(shù)多個
x=ky+3代入雙曲線
x2
9
-
y2
4
=1
,可化為(4k2-9)y2+24ky=0.
①當4k2-9=0時,可得k=±
3
2
,此時直線與雙曲線的漸近線平行,直線與雙曲線有且只有一個交點,滿足題意;
②當4k2-9≠0時,由直線與雙曲線有且只有一個公共點,可得△=(24k)2-0=0,解得k=0.此時滿足條件.
綜上可得:k=±
3
2
,0.
故選:C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,動點p(x,y)(x≥0)滿足:點p到定點F(
1
2
,0)與到y(tǒng)軸的距離之差為
1
2
.記動點p的軌跡為曲線C.
(1)求曲線C的軌跡方程;
(2)過點F的直線交曲線C于A、B兩點,過點A和原點O的直線交直線x=-
1
2
于點D,求證:直線DB平行于x軸.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點M是曲線C上任一點,點M到點F(1,0)的距離比到y(tǒng)軸的距離多1.
(1)求曲線C的方程;
(2)過點P(0,2)的直線L交曲線C于A、B兩點,若以AB為直徑的圓經過原點O,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設直線y=x+1與橢圓
x2
2
+y2=1
相交于A,B兩點,則|AB|=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,點F是橢圓W:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點,A、B分別是橢圓的右頂點與上頂點,橢圓的離心率為
1
2
,三角形ABF的面積為
3
3
2
,
(Ⅰ)求橢圓W的方程;
(Ⅱ)對于x軸上的點P(t,0),橢圓W上存在點Q,使得PQ⊥AQ,求實數(shù)t的取值范圍;
(Ⅲ)直線l:y=kx+m(k≠0)與橢圓W交于不同的兩點M、N(M、N異于橢圓的左右頂點),若以MN為直徑的圓過橢圓W的右頂點A,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

k為何值時,直線y=kx+2和橢圓2x2+3y2=6有兩個交點( 。
A.-
6
3
<k<
6
3
B.k>
6
3
或k<-
6
3
C.-
6
3
≤k≤
6
3
D.k≥
6
3
或k≤-
6
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓
x2
16
+
y2
9
=1
的左、右焦點分別為F1、F2,過焦點F1的直線交橢圓于A,B兩點,若△ABF2的內切圓的面積為π.A,B兩點的坐標分別為(x1,y1)和(x2,y2),則|y2-y1|的值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C的頂點在原點,經過點A(1,2),其焦點F在y軸上,直線y=kx+2交拋物線C于A,B兩點,M是線段AB的中點,過M作x軸的垂線交拋物線C于點N.
(Ⅰ)求拋物線C的方程;
(Ⅱ)證明:拋物線C在點N處的切線與AB平行.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線l:y=k(x-
2
)
與雙曲線x2-y2=1僅有一個公共點,則實數(shù)k的值為( 。
A.1B.-1C.1或-1D.1或-1或0

查看答案和解析>>

同步練習冊答案