2.設(shè)a、b、c為正數(shù),且a+b+c=1,則ab2c+abc2的最大值為$\frac{27}{1024}$.

分析 ab2c+abc2=abc(b+c)=$\frac{1}{12}$(3a)(2b)(2c) (b+c),利用基本不等式,即可求出ab2c+abc2的最大值.

解答 解:ab2c+abc2=abc(b+c)=$\frac{1}{12}$(3a)(2b)(2c) (b+c)≤$\frac{1}{12}$$(\frac{3a+2b+2c+b+c}{4})^{4}$=$\frac{27}{1024}$.
當(dāng)且僅當(dāng)a=$\frac{1}{4}$,b=c=$\frac{3}{8}$時(shí)取等號(hào).
故答案為:$\frac{27}{1024}$.

點(diǎn)評(píng) 本題考查基本不等式的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,正確變形是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某人劃船逆流而上,當(dāng)船經(jīng)過(guò)一橋時(shí),船上一小木塊掉進(jìn)河水里,但一直航行到上游某處時(shí)此人才發(fā)現(xiàn),便立即返航追趕,當(dāng)他返航經(jīng)過(guò)1小時(shí)追上小木塊時(shí),發(fā)現(xiàn)小木塊距離橋6km遠(yuǎn),若此人向上游和向下游航行時(shí)的劃行力一樣(相當(dāng)于船在靜水中前進(jìn)的速率為一定值),則河水的流速為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.解下列不等式:
(1)x2+2x-3≤0
(2)x-x2+6<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.?dāng)?shù)列{an}中,a1=2,an+1=an+4n,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.解不等式:|x|<|x+1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知在△ABC中,a=10,B=60°,cosC=$\frac{\sqrt{3}}{3}$,則c等于20$\sqrt{6}$-40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=4,對(duì)一切正整數(shù)n,都有$\frac{1}{2}$Sn-an+2=0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an•log${\;}_{\frac{1}{2}}$$\frac{1}{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}滿足a1=1,a2=-13,an+2-2an+1+an=2n-6.設(shè)bn=an+1-an,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=$\sqrt{2}$sin$\frac{x}{2}$cos$\frac{x}{2}$-$\sqrt{2}$sin2$\frac{x}{2}$.
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間(-π,0)上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案