分析 (1)利用直線y=-$\frac{p}{2}$被圓O:x2+y2=4所截得的弦長(zhǎng)為$\sqrt{15}$,結(jié)合勾股定理,即可求出拋物線C的方程;
(2)設(shè)N(t,$\frac{{t}^{2}}{2}$),圓心O到直線PQ的距離為$\frac{\frac{{t}^{2}}{2}}{\sqrt{1+{t}^{2}}}$,求出點(diǎn)F到直線PQ的距離,表示出△FPQ面積,利用配方法,可求△FPQ面積的最大值.
解答 解:(1)因?yàn)閽佄锞C的準(zhǔn)線方程為y=-$\frac{p}{2}$,且直線y=-$\frac{p}{2}$被圓O:x2+y2=4所截得的弦長(zhǎng)為$\sqrt{15}$,
所以($\frac{p}{2}$)2=4-($\frac{\sqrt{15}}{2}$)2,解得p=1,因此拋物線C的方程為x2=2y;(4分)
(2)設(shè)N(t,$\frac{{t}^{2}}{2}$),由y′=x知直線PQ的方程為:y-$\frac{{t}^{2}}{2}$=t(x-t).即y=tx-$\frac{{t}^{2}}{2}$.(6分)
因?yàn)閳A心O到直線PQ的距離為$\frac{\frac{{t}^{2}}{2}}{\sqrt{1+{t}^{2}}}$,所以|PQ|=2$\sqrt{4-\frac{{t}^{4}}{4(1+{t}^{2})}}$,(7分)
設(shè)點(diǎn)F到直線PQ的距離為d,則d=$\frac{\frac{1}{2}+\frac{{t}^{2}}{2}}{\sqrt{1+{t}^{2}}}$=$\frac{1}{2}$$\sqrt{1+{t}^{2}}$,( 8分)
所以,△FPQ的面積S=$\frac{1}{2}$|PQ|d=$\frac{1}{4}$$\sqrt{-{t}^{4}+16{t}^{2}+16}$=$\frac{1}{4}\sqrt{-({t}^{2}-8)^{2}+80}$≤$\frac{1}{4}\sqrt{80}$=$\sqrt{5}$(11分)
當(dāng)t=$±2\sqrt{2}$時(shí)取到“=”,經(jīng)檢驗(yàn)此時(shí)直線PQ與圓O相交,滿足題意.
綜上可知,△FPQ的面積的最大值為$\sqrt{5}$.(12分)
點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查拋物線方程,考查三角形面積的計(jì)算,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1-ln2}{4}$ | B. | $\frac{3-2ln2}{4}$ | C. | $\frac{1+ln4}{4}$ | D. | $\frac{31}{64}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | A?B | B. | B?A | C. | A=B | D. | A∩B=∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,2] | B. | (1,3) | C. | [1,3) | D. | (1,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 45 | B. | 43 | C. | 40 | D. | 42 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com