分析 (1)如圖所示,線(xiàn)段AE上存在一點(diǎn)P,使得PF∥平面ABCD.分別在A(yíng)E,AD上取一點(diǎn)P,N,使得$\frac{AP}{AE}=\frac{AN}{AD}$=$\frac{1}{3}$,連接PN.可得PN=$\frac{1}{3}$DE=1,PN∥DE,已知CF∥DE,CF=$\frac{1}{3}$DE.即可證明四邊形PNCF是平行四邊形,再利用線(xiàn)面平行的判定定理即可證明.
(2)四邊形ABCD為矩形,平面ABCD⊥平面CDEF,可得:AD⊥平面CDEF,在直角梯形CDEF中,可得S△CEF=$\frac{1}{2}CF•CD$,又P是AE的中點(diǎn),VP-CEF=$\frac{1}{2}{V}_{A-CEF}$=$\frac{1}{2}$×$\frac{1}{3}{S}_{△CEF}$•AD,即可得出.
解答 (1)解:如圖所示,線(xiàn)段AE上存在一點(diǎn)P,使得PF∥平面ABCD.
分別在A(yíng)E,AD上取一點(diǎn)P,N,使得$\frac{AP}{AE}=\frac{AN}{AD}$=$\frac{1}{3}$,連接PN.
則PN=$\frac{1}{3}$DE=1,PN∥DE,又CF∥DE,CF=$\frac{1}{3}$DE.
∴PN$\underset{∥}{=}$CF,
∴四邊形PNCF是平行四邊形,
∴PF∥CN,又NC?平面ABCD,PF?平面ABCD,
∴PF∥平面ABCD.
(2)解:∵四邊形ABCD為矩形,平面ABCD⊥平面CDEF,
∴AD⊥平面CDEF,
在直角梯形CDEF中,∵CD⊥CF.
∴S△CEF=$\frac{1}{2}CF•CD$=$\frac{1}{2}×1×1$=$\frac{1}{2}$.又P是AE的中點(diǎn),
∴VP-CEF=$\frac{1}{2}{V}_{A-CEF}$=$\frac{1}{2}$×$\frac{1}{3}{S}_{△CEF}$•AD
=$\frac{1}{6}×\frac{1}{2}×1$
=$\frac{1}{12}$.
點(diǎn)評(píng) 本題考查了空間線(xiàn)面面面的位置關(guān)系、平行線(xiàn)與平行四邊形的性質(zhì)、三棱錐的體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{65}{3}$ | B. | $\frac{\sqrt{65}}{3}$ | C. | $\frac{31}{6}$ | D. | $\frac{65}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com