5.對任意x∈R,比較x2+x+1與$\frac{3}{4}$的大。

分析 作差,配方即可比較大。

解答 解:x2+x+1-$\frac{3}{4}$=x2+x+$\frac{1}{4}$=(x+$\frac{1}{2}$)2≥0,
故x2+x+1≥$\frac{3}{4}$.

點(diǎn)評 本題考查了作差法比較大小,以及配方法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知角α終邊與單位圓的交點(diǎn)坐標(biāo)為(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),那么sinα=$\frac{1}{2}$,cosα=-.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知圓C的圓心在直線3x-y=0上,半徑為1且與直線x-y=0相切,則圓C的標(biāo)準(zhǔn)方程是(x+$\frac{\sqrt{2}}{2}$)2+(y+$\frac{3\sqrt{2}}{2}$)2=1或(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{3\sqrt{2}}{2}$)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知點(diǎn)F1(-2$\sqrt{2}$,0),F(xiàn)2(2$\sqrt{2}$,0),動點(diǎn)P為曲線C上任意點(diǎn)且滿足|PF1|+|PF2|=4$\sqrt{3}$.
(1)求曲線C的方程;
(2)若斜率為1的直線l與曲線C交于A、B兩點(diǎn),且P(-3,2)在線段AB的垂直平分線上,求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.比較a4+5a2+7與(a2+2)2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.m∈R,“函數(shù)y=2x+m-1沒有零點(diǎn)”是“對任意的x>1,logmx>0恒成立”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)集合A={x|3≤x<10},B={x|2<x<7},求A∩B,A∪CRB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知tanα,tanβ是關(guān)于x的一元二次方程x2+px+2=0的兩實(shí)根,求$\frac{sin(α+β)}{cos(α-β)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,在多面體ABCDEF中,四邊形ABCD為矩形,底面CDEF為直角梯形,且平面ABCD⊥平面CDEF,CF∥DE,CD⊥DE,AB=2BC=2CF=2,DE=3CF.
(1)試問:線段AE上是否存在一點(diǎn)P,使得PF∥平面ABCD?請說明理由;
(2)若P是AE的中點(diǎn),求三棱錐P-CEF的體積.

查看答案和解析>>

同步練習(xí)冊答案