【題目】首項(xiàng)為O的無窮數(shù)列同時(shí)滿足下面兩個(gè)條件:
①;②
(1)請直接寫出的所有可能值;
(2)記,若對任意成立,求的通項(xiàng)公式;
(3)對于給定的正整數(shù),求的最大值.
【答案】(1);(2);(3)當(dāng)為奇數(shù)時(shí)的最大值為; 當(dāng)為偶數(shù)時(shí),的最大值為.
【解析】
(1)由遞推關(guān)系得到的所有可能值;
(2)由題意可知數(shù)列的偶數(shù)項(xiàng)是單調(diào)遞增數(shù)列,先證明數(shù)列中相鄰兩項(xiàng)不可能同時(shí)為非負(fù)數(shù),即可得到結(jié)果;
(3) 由(2)的證明知,不能都為非負(fù)數(shù),分類討論即可得到結(jié)果.
(1)的值可以取 .
(2)因?yàn)?/span>,因?yàn)?/span>對任意成立,所以為單調(diào)遞增數(shù)列,
即數(shù)列的偶數(shù)項(xiàng)是單調(diào)遞增數(shù)列,
根據(jù)條件,,
所以當(dāng)對成立 ,
下面我們證明“數(shù)列中相鄰兩項(xiàng)不可能同時(shí)為非負(fù)數(shù)”,
假設(shè)數(shù)列中存在同時(shí)為非負(fù)數(shù),
因?yàn)?/span>,
若 則有,與條件矛盾,
若則有, 與條件矛盾 ,
所以假設(shè)錯(cuò)誤,即數(shù)列中相鄰兩項(xiàng)不可能同時(shí)為非負(fù)數(shù),
此時(shí)對成立,
所以當(dāng)時(shí),,即,
所以 ,
,
所以,
即,其中 ,
即,其中,
又,,
所以是以,公差為的等差數(shù)列,
所以 .
(3) 記img src="http://thumb.zyjl.cn/questionBank/Upload/2019/06/16/08/8f57fbfd/SYS201906160803112681422329_DA/SYS201906160803112681422329_DA.039.png" width="260" height="22" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
由(2)的證明知,不能都為非負(fù)數(shù),
當(dāng),則,
根據(jù),得到,所以,
當(dāng),則,
根據(jù),得到,所以,
所以,總有成立 ,
當(dāng)為奇數(shù)時(shí),,故的奇偶性不同,則 ,
當(dāng)為偶數(shù)時(shí), ,
當(dāng)為奇數(shù)時(shí),,
考慮數(shù)列: ,,
可以驗(yàn)證,所給的數(shù)列滿足條件,且,
所以的最大值為,
當(dāng)為偶數(shù)時(shí),,
考慮數(shù)列:,,-,, ,
可以驗(yàn)證,所給的數(shù)列滿足條件,且,
所以的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)正和一個(gè)平行四邊形ABDE在同一個(gè)平面內(nèi),其中,,AB,DE的中點(diǎn)分別為F,G.現(xiàn)沿直線AB將翻折成,使二面角為,設(shè)CE中點(diǎn)為H.
(1)(i)求證:平面平面AGH;
(ii)求異面直線AB與CE所成角的正切值;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,{bn}滿足bn=2nan,b3=10,且{bn}是等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng);
(2)求數(shù)列{an}的前n項(xiàng)和為Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)《人民網(wǎng)》報(bào)道,“美國國家航空航天局( NASA)發(fā)文稱,相比20年前世界變得更綠色了,衛(wèi)星資料顯示中國和印度的行動(dòng)主導(dǎo)了地球變綠.”據(jù)統(tǒng)計(jì),中國新增綠化面積的420/0來自于植樹造林,下表是中國十個(gè)地區(qū)在2017年植樹造林的相關(guān)數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復(fù)、人工更新的面積之和)
單位:公頃
按造林方式分 | ||||||
地區(qū) | 造林總面積 | 人工造林 | 飛播造林 | 新封山育林 | 退化林修復(fù) | 人工更新 |
內(nèi)蒙 | 618484 | 311052 | 74094 | 136006 | 90382 | 6950 |
河北 | 583361 | 345625 | 33333 | 135107 | 65653 | 3643 |
河南 | 149002 | 97647 | 13429 | 221117 | 15376 | 133 |
重慶 | 226333 | 100600 | 、 62400 | 63333 | ||
陜西 | 297642 | 184108 | 33602 | 63865 | 16067 | |
甘肅 | 325580 | 260144 | 57438 | 7998 | ||
新疆 | 263903 | 118105 | 6264 | 126647 | 10796 | 2091 |
青海 | 178414 | 16051 | 159734 | 2629 | ||
寧夏 | 91531 | 58960 | 22938 | 8298 | 1335 | |
北京 | 19064 | 10012、 | 4000 | 3999 | 1053 |
(1)請根據(jù)上述數(shù)據(jù),分別寫出在這十個(gè)地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);
(2)在這十個(gè)地區(qū)中,任選一個(gè)地區(qū),求該地區(qū)人工造林面積與造林總面積的比值不足50%的概率是多少?
(3)從上表新封山育林面積超過十萬公頃的地區(qū)中,任選兩個(gè)地區(qū),求至少有一個(gè)地區(qū)退化林修復(fù)面積超過五萬公頃的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),求證:函數(shù)存在極小值;
(Ⅲ)請直接寫出函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘時(shí)期,人們認(rèn)為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是(≈0.618,稱為黃金分割比例),著名的“斷臂維納斯”便是如此.此外,最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是.若某人滿足上述兩個(gè)黃金分割比例,且腿長為105cm,頭頂至脖子下端的長度為26 cm,則其身高可能是
A. 165 cmB. 175 cmC. 185 cmD. 190cm
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的圓心為,的圓心為,一動(dòng)圓與圓內(nèi)切,與圓外切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)過點(diǎn)的直線交曲線于兩點(diǎn),交直線于點(diǎn),是否存在實(shí)數(shù),使得成立?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知點(diǎn)A(2,0),B(2,0),動(dòng)點(diǎn)M(x,y)滿足直線AM與BM的斜率之積為.記M的軌跡為曲線C.
(1)求C的方程,并說明C是什么曲線;
(2)過坐標(biāo)原點(diǎn)的直線交C于P,Q兩點(diǎn),點(diǎn)P在第一象限,PE⊥x軸,垂足為E,連結(jié)QE并延長交C于點(diǎn)G.
(i)證明:是直角三角形;
(ii)求面積的最大值.
(二)選考題:共10分.請考生在第22、23題中任選一題作答。如果多做,則按所做的第一題計(jì)分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(請寫出式子在寫計(jì)算結(jié)果)有4個(gè)不同的小球,4個(gè)不同的盒子,現(xiàn)在要把球全部放入盒內(nèi):
(1)共有多少種方法?
(2)若每個(gè)盒子不空,共有多少種不同的方法?
(3)恰有一個(gè)盒子不放球,共有多少種放法?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com